


Would it be possible for a regular polygon to have interior angles with the angle measure described? Explain.

| <b>18.</b> $155^{\circ}$ <b>19.</b> $160^{\circ}$ <b>20.</b> $165^{\circ}$ <b>21.</b> $168^{\circ}$ | <b>18.</b> 155° | <b>55° 19.</b> 160° | <b>20.</b> 165° | <b>21.</b> 168° |
|-----------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------------|-----------------|
|-----------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------------|-----------------|

## Tell whether each statement is *always, sometimes,* or *never* true.

- **22.** As the number of sides of a polygon increases, the sum of the interior angles increases.
- **23.** As the number of sides of a polygon increases, the sum of the exterior angles decreases.
- **24.** A regular polygon is equilateral.
- **25.** An equilateral polygon is regular.
- **26.** If the number of sides of an equiangular polygon is doubled, the measure of each exterior angle is halved.
- **27**. The measure of an exterior angle of a decagon is greater than the measure of an exterior angle of a pentagon.

16