\qquad

Reteaching with Practice
 For use with pages 558-565

GOAL Find the sine, the cosine, and the tangent of an acute angle and use trigonometric ratios to solve real-life problems

Vocabulary

A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. The three basic trigonometric ratios are sine, cosine, and tangent, which are abbreviated as \sin , \cos, and tan, respectively.

The angle that your line of sight makes with a line drawn horizontally is called the angle of elevation.

Trigonometric Ratios

Let $\triangle A B C$ be a right triangle. The sine, the cosine, and the tangent of the acute angle $\angle A$ are defined as follows.

$$
\begin{array}{ll}
\sin A=\frac{\text { side opposite } \angle A}{\text { hypotenuse }}=\frac{a}{c} \\
\cos A=\frac{\text { side adjacent } \angle A}{\text { hypotenuse }}=\frac{b}{c} & \text { hypotenuse } \\
\tan A=\frac{\text { side opposite } \angle A}{\text { side adjacent } \angle A}=\frac{a}{b} & A \\
\text { side adjacent to } \angle A
\end{array}
$$

EXAMPLE 1 Finding Trigonometric Ratios

Find the sine, the cosine, and the tangent of the indicated angle.
a. $\angle A$
b. $\angle B$

Solution

a. The length of the hypotenuse is 24.5 . For $\angle A$, the length of the opposite side is 8.2 , and the length of the adjacent side is 23.1.
$\sin A=\frac{\text { opp. }}{\text { hyp. }}=\frac{8.2}{24.5} \approx 0.3347$
$\cos A=\frac{\text { adj. }}{\text { hyp. }}=\frac{23.1}{24.5} \approx 0.9429$
$\tan A=\frac{\text { opp. }}{\text { adj. }}=\frac{8.2}{23.1} \approx 0.3550$
\qquad

Reteaching with Practice

For use with pages 558-565
b. The length of the hypotenuse is 24.5 . For $\angle B$, the length of the opposite side is 23.1 and the length of the adjacent side is 8.2.
$\sin B=\frac{\text { opp. }}{\text { hyp. }}=\frac{23.1}{24.5} \approx 0.9429$
$\cos B=\frac{\text { adj. }}{\text { hyp. }}=\frac{8.2}{24.5} \approx 0.3347$
$\tan B=\frac{\text { opp. }}{\text { adj. }}=\frac{23.1}{8.2} \approx 2.8171$

Exercises for Example 1

Find the sine, cosine, and tangent of $\angle A$.
1.

2.

3.

EXAMPLE 2 Estimating a Distance

It is known that a hill frequently used for sled riding has an angle of elevation of 30° at its bottom. If the length of a sledder's ride is 52.6 feet, estimate the height of the hill.

Solution

Use the sine ratio for the 30° angle, because you have the value of the hypotenuse and you are looking for the value of the side opposite the 30° angle.

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{h}{52.6} \\
h & =(52.6) \cdot \sin 30^{\circ}=(52.6) \cdot(0.5)=26.3 \mathrm{feet}
\end{aligned}
$$

Exercises for Example 2

4. In the sled-riding example, find the height of the hill if the angle of elevation of the hill is 42°.
5. If the angle of elevation from your position on the ground to the top of a building is 67° and you are standing 30 meters from the foot of the building, approximate the height of the building.
