Date

Name

Reteaching with Practice

For use with pages 558–565

GOAL

LESSON

Find the sine, the cosine, and the tangent of an acute angle and use trigonometric ratios to solve real-life problems

VOCABULARY

A **trigonometric ratio** is a ratio of the lengths of two sides of a right triangle. The three basic trigonometric ratios are **sine**, **cosine**, and **tangent**, which are abbreviated as *sin*, *cos*, and *tan*, respectively.

The angle that your line of sight makes with a line drawn horizontally is called the **angle of elevation.**

Trigonometric Ratios

Let $\triangle ABC$ be a right triangle. The sine, the cosine, and the tangent of the acute angle $\angle A$ are defined as follows.

EXAMPLE 1 Finding Trigonometric Ratios

Find the sine, the cosine, and the tangent of the indicated angle.

- **a.** ∠A
- **b.** ∠*B*

SOLUTION

a. The length of the hypotenuse is 24.5. For $\angle A$, the length of the opposite side is 8.2, and the length of the adjacent side is 23.1.

$$\sin A = \frac{\text{opp.}}{\text{hyp.}} = \frac{8.2}{24.5} \approx 0.3347$$
$$\cos A = \frac{\text{adj.}}{\text{hyp.}} = \frac{23.1}{24.5} \approx 0.9429$$
$$\tan A = \frac{\text{opp.}}{\text{adj.}} = \frac{8.2}{23.1} \approx 0.3550$$

75

LESSON

CONTINUED

Reteaching with Practice

For use with pages 558–565

b. The length of the hypotenuse is 24.5. For $\angle B$, the length of the opposite side is 23.1 and the length of the adjacent side is 8.2.

$$\sin B = \frac{\text{opp.}}{\text{hyp.}} = \frac{23.1}{24.5} \approx 0.9429$$
$$\cos B = \frac{\text{adj.}}{\text{hyp.}} = \frac{8.2}{24.5} \approx 0.3347$$
$$\tan B = \frac{\text{opp.}}{\text{adj.}} = \frac{23.1}{8.2} \approx 2.8171$$

Exercises for Example 1

Find the sine, cosine, and tangent of $\angle A$.

EXAMPLE 2 Estimating a Distance

It is known that a hill frequently used for sled riding has an angle of elevation of 30° at its bottom. If the length of a sledder's ride is 52.6 feet, estimate the height of the hill.

.....

SOLUTION

Use the sine ratio for the 30° angle, because you have the value of the hypotenuse and you are looking for the value of the side opposite the 30° angle.

$$\sin 30^\circ = \frac{h}{52.6}$$

$$h = (52.6) \cdot \sin 30^\circ = (52.6) \cdot (0.5) = 26.3 \text{ feet}$$

Exercises for Example 2

- **4.** In the sled-riding example, find the height of the hill if the angle of elevation of the hill is 42°.
- **5.** If the angle of elevation from your position on the ground to the top of a building is 67° and you are standing 30 meters from the foot of the building, approximate the height of the building.

76