Reteaching with Practice

For use with pages 551-557

NAME

LESSON

GOAL Find the side lengths of special right triangles

Vocabulary

Right triangles whose angle measures are 45° - 45° - 90° or 30° - 60° - 90° are called **special right triangles.**

Theorem 9.8 The 45°- 45°- 90° Triangle Theorem In a 45°- 45°- 90° triangle, the hypotenuse is $\sqrt{2}$ times as long as each leg.

Theorem 9.9 The 30°- 60°- 90° Triangle Theorem In a 30°- 60°- 90° triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

EXAMPLE 1 Finding Side Lengths in a 45°-45°-90° Triangle

Find the value of *x*.

SOLUTION

By the Triangle Sum Theorem, the measure of the third angle is 45° . The triangle is a 45° - 45° - 90° right triangle, so the length *x* of the hypotenuse is $\sqrt{2}$ times the length of a leg.

Hypotenuse = $\sqrt{2} \cdot \log$ 45°-45°-90° Triangle Theorem $x = \sqrt{2} \cdot 7$ Substitute. $x = 7\sqrt{2}$ Simplify.

Exercises for Example 1

Find the value of each variable.

Reteaching with Practice

For use with pages 551–557

Name

Find the value of *x*.

SOLUTION

Because the triangle is a 30°- 60°- 90° triangle, the longer leg is $\sqrt{3}$ times the length x of the shorter leg.

Exercises for Example 2

Find the value of each variable.

61

Date