

**Reteaching with Practice** 

For use with pages 543–549

Name



Use the converse of the Pythagorean Theorem to solve problems and use side lengths to classify triangles by their angle measures

### **Theorem 9.5** Converse of the Pythagorean Theorem

If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.

## Theorem 9.6

If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, then the triangle is acute.

### Theorem 9.7

If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle is obtuse.

## **EXAMPLE 1** Verifying Right Triangles

The triangles below appear to be right triangles. Tell whether they are right triangles.





Date

## SOLUTION

Let *c* represent the length of the longest side of the triangle (you do not want to call this the "hypotenuse" because you do not yet know if the triangle is a right triangle). Check to see whether the side lengths satisfy the equation  $c^2 = a^2 + b^2$ .

| <b>a.</b> $10^2 \stackrel{?}{=} 8^2 + 7^2$ | <b>b.</b> $20^2 \stackrel{?}{=} 12^2 + 16^2$ |
|--------------------------------------------|----------------------------------------------|
| 100 = 64 + 49                              | 400 = 144 + 256                              |
| $100 \neq 113$                             | 400 = 400                                    |
| The triangle is not a right triangle.      | The triangle is a right triangle.            |



Name

# **Reteaching with Practice**

For use with pages 543–549

## **Exercises for Example 1**

In Exercises 1–3, determine if the triangles are right triangles.



## **EXAMPLE 2** Classifying Triangles

Decide whether the set of numbers can represent the side lengths of a triangle. If they can, classify the triangle as *right*, *acute*, or *obtuse*.

**a.** 58, 69, 80 **b.** 11, 30, 39

#### SOLUTION

You can use the Triangle Inequality to confirm that each set of numbers can represent the side lengths of a triangle.

Compare the square of the length of the longest side with the sum of the squares of the lengths of the two shorter sides.

| a. | $c^2 \underline{?} a^2 + b^2$                      | Compare $c^2$ with $a^2 + b^2$ .    |
|----|----------------------------------------------------|-------------------------------------|
|    | $80^2$ ? $58^2 + 69^2$                             | Substitute.                         |
|    | 6400 <u>?</u> 3364 + 4761                          | Multiply.                           |
|    | 6400 < 8125                                        | $c^2$ is less than $a^2 + b^2$ .    |
|    | Because $c^2 < a^2 + b^2$ , the triangle is acute. |                                     |
| b. | $c^2 \underline{?} a^2 + b^2$                      | Compare $c^2$ with $a^2 + b^2$ .    |
|    | $39^2 ? 11^2 + 30^2$                               | Substitute.                         |
|    | 1521 <u>?</u> 121 + 900                            | Multiply.                           |
|    | 1521 > 1021                                        | $c^2$ is greater than $a^2 + b^2$ . |

Because  $c^2 > a^2 + b^2$ , the triangle is obtuse.

### **Exercises for Example 2**

Decide whether the set of numbers can represent the side lengths of a triangle. If they can, classify the triangle as *right*, *acute*, or *obtuse*.

**4.** 5,  $\sqrt{56}$ , 9 **5.** 23, 44, 70 **6.** 12, 80, 87 **7.** 4, 7, 10

48

Date \_