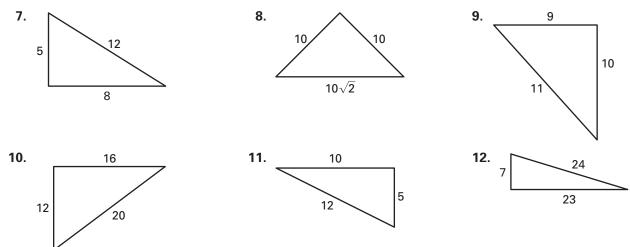


Name \_\_\_

DATE

For use with pages 543–549

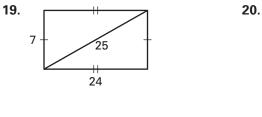

**Practice A** 

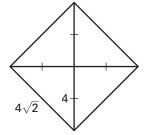
#### Decide whether the numbers can represent the side lengths of a

#### triangle.

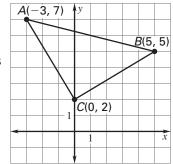
| <b>1.</b> 5, 4, 3   | <b>2.</b> 5, 6, 7   | <b>3.</b> 5, 5, 10  |
|---------------------|---------------------|---------------------|
| <b>4.</b> 5, 10, 10 | <b>5.</b> 5, 10, 15 | <b>6.</b> 5, 15, 15 |

Tell whether the triangle is a right triangle.





### Classify the triangles with the given side lengths as *right*, *acute*, or *obtuse*.

| <b>13.</b> 6, 8, 10                        | <b>14.</b> 6, 6, 10      | <b>15.</b> 6, 10, 10 |
|--------------------------------------------|--------------------------|----------------------|
| <b>16.</b> $\sqrt{6}, \sqrt{8}, \sqrt{10}$ | <b>17.</b> 0.6, 0.8, 1.0 | <b>18.</b> 7, 9, 11  |


## Classify the quadrilateral. Explain how you can prove that the quadrilateral is that type.







# **21**. 10



In Exercises 22–24, you will use two different methods for determining whether  $\triangle ABC$  is a right triangle.

- **22.** *Method* 1 Find the slope of  $\overline{AC}$  and the slope of  $\overline{BC}$ . What do the slopes tell you about  $\angle ACB$ ? Is  $\triangle ABC$  a right triangle? How do you know?
- **23**. *Method* **2** Use the Distance Formula and the Converse of the Pythagorean Theorem to determine whether  $\triangle ABC$  is a right triangle.
- **24.** Which method would you use to determine whether a given triangle is right, acute, or obtuse? Explain.