Name
Date \qquad

Challenge: Skills and Applications

For use with pages 543-549

1. Here is a formula for generating Pythagorean triples. If m and n are positive integers, with $m<n$, let $a=n^{2}-m^{2}, b=2 m n$, and $c=n^{2}+m^{2}$.
a. Show that a, b, and c form a Pythagorean triple.
b. List the Pythagorean triples that are generated using $n \leq 5$.
c. It can be shown that every Pythagorean triple can be generated in this manner. Find expressions for m and n in terms of a, b, and c.
d. If you are given the three numbers of a Pythagorean triple and asked to find the corresponding values of m and n, how can you decide which number is a, which is b, and which is c ?
e. Find the values of m and n for the Pythagorean triple 56, 90, 106 .
f. Find the values of m and n for the Pythagorean triple 48, 55, 73 .
2. Let $P Q R S$ be a parallelogram with side lengths $Q R=P S=c$ and $Q P=R S=d$, and diagonal lengths $P R=e$ and $Q S=f$.
a. Justify drawing auxiliary line segments $\overline{Q T}, \overline{S U}$, and $\overline{U P}$, as shown.
b. Use the Pythagorean Theorem and the properties of algebra to evaluate $e^{2}+f^{2}$ in terms of c and d.
c. Based on your work, write a general statement about the relationship between the lengths of the sides and the diagonals of a parallelogram.
d. Using the diagram, show that the relationship you found in part (c) does not hold true for a kite.

In Exercises 3-8, find the possible values of \boldsymbol{x}.

3. $\triangle A B C$ is a right triangle; $A B=x, B C=x+1, A C=x+9$.
4. $\triangle D E F$ is a right triangle; $D E=12, E F=x-1, D F=x+1$.
5. $\triangle G H I$ is a right triangle; $G H=5, H I=x+4, G I=2 x-3$.

6. $\triangle J K L$ is a right triangle; $J K=3 x-6, K L=2 x+11, J L=20$.
7. $\triangle M N O$ is an acute triangle; $M N=x-1, N O=x+1, M O=8$.
8. $\triangle P Q R$ is an obtuse triangle; $P Q=x, Q R=x+1, P R=5$.
