Activity Lesson Opener

For use with pages 535-541

SET UP: Work with a partner.

Half of a proof of the Pythagorean Theorem is shown. Below that, the remaining five statements of the proof are given out of order. Complete the proof by writing the other statements in order with a reason for each.
Pythagorean Theorem: In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.
Given: In $\triangle A B C, \angle B C A$ is a right angle.

Prove: $a^{2}+b^{2}=c^{2}$

1. Extend $\overline{A C}$ to D such that $\angle D B A$ is a right angle.
2. $\frac{b}{a}=\frac{a}{D C}$ (Geometric Mean Theorem)

3. $D C=\frac{a^{2}}{b}$ (Cross product prop.; multiplication prop. of equality)
4. $\triangle B C D \sim \triangle A C B$ (An altitude to the hyp. of a rt. \triangle divides the \triangle into 2 similar ©.)
5. $\frac{D B}{B A}=\frac{D C}{B C}$ (Ratios of lengths of corresponding sides of similar triangles are equal.)

Area of $\triangle B C D+$ Area of $\triangle B C A=$ Area of $\triangle D B A$	
$D B=\frac{a c}{b}$	$a^{2}+b^{2}=c^{2}$
$\frac{1}{2} \cdot a \cdot \frac{a^{2}}{b}+\frac{1}{2} \cdot a \cdot b=\frac{1}{2} \cdot \frac{a c}{b} \cdot c$	$\frac{D B}{c}=\frac{\frac{a^{2}}{b}}{a}$

