Practice C For use with pages 527–534 ### Use the diagrams at the right to find the indicated length. **1.** $$AD = 16, DB = 12, DC = ?$$ **2.** $$AB = 20, AD = 16, AC =$$ ___? **3.** $$AD = 16, DC = 2, BC =$$? **4.** $$DC = 4$$, $BC = 6$, $AC = ?$ **5.** $$AD = 25, DB = 10, DC = ?$$ **6.** $$AD = 4$$, $DC = 1$, $DB = ___?$ # In Exercises 7–9, use the diagram of the squat machine where ZY = 36 in. and ZW = 24 in. - **7.** Find the length of the vertical support bar, *XY*. - **8.** Find the length of the base bar, WX. - **9.** Find the length of the cross bar, XZ. ### In Exercises 10–14, use the given information. **Given:** $\triangle ABC$ is a right triangle with $m \angle C = 90^{\circ}$, $$\overline{DC} \perp \overline{AB}$$, \overline{FD} bisects $\angle ADC$, \overline{ED} bisects $\angle BDC$ **11.** Which triangles are similar? **12.** True or False? $$\frac{AD}{CD} = \frac{AC}{BC}$$ **13.** Is \overline{DF} an altitude of $\triangle ADC$? **14.** True or False? $$\frac{CE}{CR} = \frac{CF}{CA}$$ ### Write a two-column proof or a paragraph proof. **15.** Given: $$\triangle ABC$$ with altitude \overline{BD} , $$m \angle ABC = 90^{\circ}$$. $$AC = 6, DC = 4$$ **Prove:** $$BC = 2\sqrt{6}$$ **16. Given:** $$\triangle JKL$$ with altitude \overline{KM} , $$m \angle LKJ = 90^{\circ}$$, $$KM = 3, KJ = 5$$ **Prove:** $$JL = \frac{25}{4}$$