Practice C

For use with pages 527–534

Use the diagrams at the right to find the indicated length.

1.
$$AD = 16, DB = 12, DC = ?$$

2.
$$AB = 20, AD = 16, AC =$$
___?

3.
$$AD = 16, DC = 2, BC =$$
 ?

4.
$$DC = 4$$
, $BC = 6$, $AC = ?$

5.
$$AD = 25, DB = 10, DC = ?$$

6.
$$AD = 4$$
, $DC = 1$, $DB = ___?$

In Exercises 7–9, use the diagram of the squat machine where ZY = 36 in. and ZW = 24 in.

- **7.** Find the length of the vertical support bar, *XY*.
- **8.** Find the length of the base bar, WX.
- **9.** Find the length of the cross bar, XZ.

In Exercises 10–14, use the given information.

Given: $\triangle ABC$ is a right triangle with $m \angle C = 90^{\circ}$,

$$\overline{DC} \perp \overline{AB}$$
, \overline{FD} bisects $\angle ADC$, \overline{ED} bisects $\angle BDC$

11. Which triangles are similar?

12. True or False?
$$\frac{AD}{CD} = \frac{AC}{BC}$$

13. Is \overline{DF} an altitude of $\triangle ADC$?

14. True or False?
$$\frac{CE}{CR} = \frac{CF}{CA}$$

Write a two-column proof or a paragraph proof.

15. Given:
$$\triangle ABC$$
 with altitude \overline{BD} ,

$$m \angle ABC = 90^{\circ}$$
.

$$AC = 6, DC = 4$$

Prove:
$$BC = 2\sqrt{6}$$

16. Given:
$$\triangle JKL$$
 with altitude \overline{KM} ,

$$m \angle LKJ = 90^{\circ}$$
,

$$KM = 3, KJ = 5$$

Prove:
$$JL = \frac{25}{4}$$

