\qquad

Practice C

For use with pages 527-534

Use the diagrams at the right to find the indicated length.

1. $A D=16, D B=12, D C=$ \qquad ?
2. $A B=20, A D=16, A C=$ \qquad
3. $A D=16, D C=2, B C=$ \qquad ?

4. $D C=4, B C=6, A C=$ \qquad ?
5. $A D=25, D B=10, D C=$?
6. $A D=4, D C=1, D B=$ \qquad
In Exercises 7-9, use the diagram of the squat machine where $Z Y=36 \mathrm{in}$. and $Z W=24 \mathrm{in}$.
7. Find the length of the vertical support bar, $X Y$.
8. Find the length of the base bar, $W X$.
9. Find the length of the cross bar, $X Z$.

In Exercises 10-14, use the given information.
Given: $\triangle A B C$ is a right triangle with $m \angle C=90^{\circ}$, $\overline{D C} \perp \overline{A B}, \overline{F D}$ bisects $\angle A D C, \overline{E D}$ bisects $\angle B D C$
10. Which angles are congruent?

11. Which triangles are similar?
12. True or False? $\frac{A D}{C D}=\frac{A C}{B C}$
13. Is $\overline{D F}$ an altitude of $\triangle A D C$?
14. True or False? $\frac{C E}{C B}=\frac{C F}{C A}$

Write a two-column proof or a paragraph proof.

15. Given: $\triangle A B C$ with altitude $\overline{B D}$,

$$
\begin{aligned}
& m \angle A B C=90^{\circ}, \\
& A C=6, D C=4
\end{aligned}
$$

Prove: $B C=2 \sqrt{6}$

16. Given: $\triangle J K L$ with altitude $\overline{K M}$,

$$
\begin{aligned}
& m \angle L K J=90^{\circ}, \\
& K M=3, K J=5
\end{aligned}
$$

Prove: $J L=\frac{25}{4}$

