\qquad

Challenge: Skills and Applications

For use with pages 527-534

In Exercises 1 and 2, use the following information.

A triangle inscribed in a circle is a right triangle if and only if the longest side of the triangle is a diameter of the circle.

1. Given point D on line segment $\overline{A B}$, explain how to use a compass and straightedge to construct a line segment whose length is the geometric mean of $A D$ and $B D$.
2. Refer to the diagram. In $\triangle A B C, \overline{C D}$ is an altitude and $\overline{C E}$ is a median.
a. Explain why $C E$ is the arithmetic mean of $A D$ and $B D$.
b. Use the diagram to show that the arithmetic mean of $A D$ and $B D$ is greater than the geometric mean of $A D$ and $B D$.

c. Use your argument from part (b) to show that the arithmetic mean of any two distinct positive numbers is greater than the geometric mean.

In Exercises 3 and 4, refer to the diagram.

3. Prove that $\frac{(A C)^{2}}{(B C)^{2}}=\frac{A D}{B D}$.
4. If $A D=x^{2}$ and $B D=y^{2}$, use the Geometric Mean Theorems to find $A C, B C$, and $C D$ in terms of x and y. (Assume that x and y are positive.)

In Exercises 5-10, find the possible values of \boldsymbol{x}.
5.

6.

7.

8.

9.

10.

