

Challenge: Skills and Applications

For use with pages 527-534

NAME

In Exercises 1 and 2, use the following information.

A triangle inscribed in a circle is a right triangle if and only if the longest side of the triangle is a diameter of the circle.

- **1.** Given point D on line segment \overline{AB} , explain how to use a compass and straightedge to construct a line segment whose length is the geometric mean of AD and BD.
- **2.** Refer to the diagram. In $\triangle ABC$, \overline{CD} is an altitude and \overline{CE} is a median.
 - **a.** Explain why *CE* is the arithmetic mean of *AD* and BD.
 - **b.** Use the diagram to show that the arithmetic mean of AD and BD is greater than the geometric mean of AD and BD.

c. Use your argument from part (b) to show that the arithmetic mean of any two distinct positive numbers is greater than the geometric mean.

In Exercises 3 and 4, refer to the diagram.

- **3.** Prove that $\frac{(AC)^2}{(BC)^2} = \frac{AD}{BD}$.
- **4.** If $AD = x^2$ and $BD = y^2$, use the Geometric Mean Theorems to find AC, BC, and CD in terms of x and y. (Assume that *x* and *y* are positive.)

In Exercises 5–10, find the possible values of x.

8.

Date

21