8.6

Name

Challenge: Skills and Applications

For use with pages 498–505

 Figure ABC is a triangle, and D and E are points on AB such that CD and CE bisect the interior and exterior angles at C, respectively.

Date

Complete the following steps to prove that $\frac{AD}{BD} = \frac{AE}{BE}$.

- **a.** Use the fact that \overrightarrow{CD} is an angle bisector to write a proportion.
- **b.** Copy the diagram. Then draw \overline{BF} such that *F* is on \overrightarrow{AC} and $\overrightarrow{BF} \parallel \overleftarrow{CE}$. Use the fact that $\overrightarrow{BF} \parallel \overleftarrow{CE}$ to write a proportion involving *AE* and *BE*.
- **c.** Show that $\triangle FBC$ is an isosceles triangle. (*Hint:* Use the fact that $\overrightarrow{BF} \parallel \overrightarrow{CE}$.)
- **d.** Use the results from parts (a) through (c) to show that $\frac{AD}{BD} = \frac{AE}{BE}$.
- **2.** If AC = BC, is the theorem given in Exercise 1 still true? Explain.

In Exercises 3–11, refer to the diagram in Exercise 1.

- **3.** If AD = 10, BD = 8, and AC = 15, what are BC and BE?
- **4.** If BE = 9, BD = 6, and BC = 8, what are AC and AD?
- **5.** If AC = 9, BC = 6, and AE = 30, what are AD and BE?
- **6.** If AB = 11, BC = 10, and BD = 5, what are AC and BE?
- 7. If AC = 10, AD = 5, and BE = 12, what are BC and AE?
- **8.** If AD = 3x, AC = 4x, BC = x + 1, and BD = x, what is x?
- **9.** If AD = x + 4, BC = x + 2, BD = x, and AC = BE, what is x?
- **10.** If CD = 3 and CE = 8, what is DE?
- **11.** If $m \angle CAB = 40^{\circ}$ and $m \angle ADC = 110^{\circ}$, what are $m \angle ABC$ and $m \angle BCE$?