\qquad
\qquad

Practice C

For use with pages 488-496

Are the triangles similar? If so, state the similarity and the postulate or theorem that justifies your answer.

1. A

2.

3.

Draw the given triangles roughly to scale. Then, name a postulate or theorem that can be used to prove that the triangles are similar.
4. In $\triangle A B C, m \angle A=38^{\circ}$ and $m \angle B=94^{\circ}$. In $\triangle X Y Z, m \angle Y=94^{\circ}$ and $m \angle Z=48^{\circ}$.
5. The ratio of $A B$ to $X Y$ is 2:3. In $\triangle A B C, m \angle B=75^{\circ}$, and in $\triangle X Y Z$, $m \angle Y=75^{\circ}$. The ratio of $B C$ to $Y Z$ is $2: 3$.
6. In $\triangle A B C, m \angle B=50^{\circ}, A B=4$, and $B C=9$. In $\triangle X Y Z, m \angle Y=50^{\circ}$, $X Y=2$ and $Y Z=4.5$.

Use the diagram shown to complete the statements.
7. $m \angle D G E=$ \qquad
8. $m \angle E D G=$ \qquad
9. $F D=$ \qquad
10. $G D=$ \qquad
11. $E G=$ \qquad
12. Name the three pairs of triangles that are similar in the figure.

Write a paragraph or a two-column proof.

13. Given: $\triangle A B C$ is equilateral.
$\overline{D E}, \overline{D F}, \overline{E F}$ are midsegments.
Prove: $\triangle A B C \sim \triangle F E D$

14. Given: $A B C D$ is a trapezoid with $\overline{A D}$ and $\overline{B C}$ as bases.
Prove: $\triangle E A D \sim \triangle E B C$

