\qquad Date \qquad

Challenge: Skills and Applications

For use with pages 465-471

In Exercises 1-6, use the given information to find all possible values of \boldsymbol{x}. (Assume the given quantities must be positive.)

1. The geometric mean of $x-3$ and $x+4$ is x.
2. The geometric mean of x and x^{2} is 8 .
3. The geometric mean of $x+1$ and $12 x$ is $6 x$.
4. The geometric mean of \sqrt{x} and $9 \sqrt{x}$ is $x-4$.
5. The geometric mean of $x-3$ and $2 x+8$ is $x+4$.
6. The geometric mean of $x+1$ and $3 x+1$ is $3 x-1$.

In Exercises 7-9, give each answer in terms of \boldsymbol{x}.

9. Given: $\frac{M N}{L N}=\frac{P N}{Q N}$,
find $L N$.
10. Given: $\frac{A B}{B C}=\frac{F E}{E D}$,
find $F E$.

11. Given: $\frac{G H}{G J}=\frac{G I}{G K}$,
find $H J$.

In Exercises 10-12, use the given information to find all possible values of \boldsymbol{x}.
10. Given: $\frac{E G}{G I}=\frac{F H}{H I}$
11. Given: $\frac{S T}{R T}=\frac{U V}{R V}$
12. Given: $\frac{J K}{K L}=\frac{J M}{M N}$

13. An airplane has a wingspan of $\left(x^{2}+1\right) \mathrm{ft}$ and a length of $\left(x^{2}-9\right) \mathrm{ft}$. A scale model of this plane has a wingspan of $(x+3) \mathrm{ft}$ and a length of $(x+1) \mathrm{ft}$. Based on this information, use a proportion to find the wingspan of the actual airplane.

