\qquad
\qquad

Reteaching with Practice

For use with pages 457-464

GOAL Find and simplify the ratio of two numbers

Vocabulary

If a and b are two quantities that are measured in the same units, then the ratio of \boldsymbol{a} to \boldsymbol{b} is $\frac{a}{b}$.

An equation that equates two ratios is a proportion.
In the proportion $\frac{a}{b}=\frac{c}{d}$, the numbers a and d are the extremes of the proportion and the numbers b and c are the means of the proportion.

Properties of Proportions

1. Cross Product Property The product of the extremes equals the product of the means.

$$
\text { If } \frac{a}{b}=\frac{c}{d} \text {, then } a d=b c
$$

2. Reciprocal Property If two ratios are equal, then their reciprocals are also equal.

$$
\text { If } \frac{a}{b}=\frac{c}{d} \text {, then } \frac{b}{a}=\frac{d}{c} \text {. }
$$

EXAMPLE 1 Simplifying Ratios

Simplify the ratios.
a. $\frac{8 \mathrm{in} \text {. }}{2 \mathrm{ft}}$
b. $\frac{1 \mathrm{~km}}{500 \mathrm{~m}}$

Solution

To simplify ratios with unlike units, convert to like units so that the units divide out. Then simplify the fraction, if possible.
a. $\frac{8 \mathrm{in} .}{2 \mathrm{ft}}=\frac{8 \mathrm{in} .}{2 \cdot 12 \mathrm{in} .}=\frac{8}{24}=\frac{1}{3}$
b. $\frac{1 \mathrm{~km}}{500 \mathrm{~m}}=\frac{1 \cdot 1000 \mathrm{~m}}{500 \mathrm{~m}}=\frac{1000}{500}=\frac{2}{1}$

Exercises for Example 1

Simplify the ratio.

1. $\frac{25 \mathrm{~cm}}{2 \mathrm{~m}}$
2. $\frac{18 \mathrm{ft}}{2 \mathrm{yd}}$
3. $\frac{2 \mathrm{ft}}{24 \mathrm{in} \text {. }}$
4. $\frac{6 \mathrm{~km}}{9 \mathrm{~km}}$
\qquad

Reteaching with Practice

For use with pages 457-464

EXAMPLE 2 Using Ratios

Triangle $X Y Z$ has an area of 25 square inches. The ratio of the base of $\triangle X Y Z$ to the height of $\triangle X Y Z$ is $2: 1$. Find the base and height of $\triangle X Y Z$.

Solution

Because the ratio of the base to the height is $2: 1$, you can represent the base as $2 h$.

$$
\begin{array}{rlrl}
A & =\frac{1}{2} b h & & \text { Formula for the area of a triangle } \\
25 & =\frac{1}{2}(2 h) h & & \text { Substitute for } A \text { and } b . \\
25 & =h^{2} & & \text { Simplify. } \\
5 & =h & & \text { Find the positive square root. } \\
\text { So, } & \triangle X Y Z \text { has a base of } 10 \text { inches and a height of } 5 \text { inches. }
\end{array}
$$

Exercise for Example 2

5. The area of a rectangle is $125 \mathrm{ft}^{2}$. The ratio of the width to the length is $1: 5$.

Find the length and the width.

EXAMPLE 3 Solving Proportions

Solve the proportion.
$\frac{x}{8}=\frac{5}{4}$

SOLUTION

$$
\begin{aligned}
\frac{x}{8} & =\frac{5}{4} & & \text { Write original proportion. } \\
4 x & =40 & & \text { Cross product property } \\
x & =10 & & \text { Divide each side by } 4 .
\end{aligned}
$$

Exercises for Example 3

Find the value of \boldsymbol{x} by solving the proportion.
6. $\frac{9}{x}=\frac{2}{7}$
7. $\frac{5}{3}=\frac{5 x}{6}$
8. $\frac{4}{x-4}=\frac{3}{x}$
9. $\frac{3}{x}=\frac{x}{12}$

