\qquad
\qquad

Reteaching with Practice
 For use with pages 437-443

(GOAL Use transformations to classify frieze patterns.
Vocabulary
A frieze pattern or border pattern is a pattern that extends to the left and right in such a way that the pattern can be mapped onto itself by a horizontal translation.

Classification of Frieze Patterns
T Translation
TR Translation and 180° rotation
TG Translation and horizontal glide reflection
TV Translation and vertical line reflection
THG Translation, horizontal line reflection, and horizontal glide reflection

TRVG Translation, 180° rotation, vertical line reflection, and horizontal glide reflection
TRHVG Translation, 180° rotation, horizontal line reflection, vertical line reflection, and horizontal glide reflection

EXAMPLE 1 Classifying Patterns

Name the isometries that map the frieze pattern onto itself.
a.

b.

Solution

a. This frieze pattern can be mapped onto itself by a horizontal translation (T).
b. This frieze pattern can be mapped onto itself by a horizontal translation (T)

or by a horizontal glide reflection (G).

\qquad

Reteaching with Practice

For use with pages 437-444

Exercises for Example 1

In Exercises 1-5, name the isometries that map the frieze pattern onto itself.
1.

2.

3.

EXAMPLE 2 Describing Transformations

Use the diagram of the frieze pattern.
a. Is there a reflection in a vertical line?
b. Is there a reflection in a horizontal line?
c. Name and describe the transformation that maps A onto F.
d. Name and describe the transformation that maps D onto E.

Solution

a. Yes, there is a reflection in the line $x=8$ and also in the line $x=15$.
b. Yes, there is a reflection in the line $y=2$.
c. A can be mapped onto F by a horizontal glide reflection.
d. D can be mapped onto E by a translation.

Exercises for Example 2

In Exercises 4-7, use the diagram of the frieze pattern.

4. Is there a reflection in a horizontal line? If so, describe the reflection(s).
5. Is there a reflection in a vertical line? If so, describe the reflection(s).
6. Name and describe the transformation that maps B onto C.
7. Name and describe the transformation that
 maps D onto C.
