\qquad
\qquad

Reteaching with Practice

For use with pages 421-428

GOALS Identify and use translations in the plane.

MOCABULARY

A translation is a transformation that maps every two points P and Q in the plane to points P^{\prime} and Q^{\prime}, so that the following properties are true:

1) $P P^{\prime}=Q Q^{\prime}$ and 2) $\overline{P P^{\prime}} \| \overline{Q Q^{\prime}}$, or $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are collinear.

A vector is a quantity that has both direction and magnitude, or size.
When a vector is drawn as $\overrightarrow{P Q}$, the initial point, or starting point, of the vector is point P and the terminal point, or ending point, of the vector is point $Q \cdot \overrightarrow{P Q}$ is read "vector $P Q$."
The component form of a vector combines the horizontal and vertical components.

EXAMPLE 1 Using Theorem 7.5

In the diagram, a reflection in line k maps $\overline{A B}$ to $\overline{A^{\prime} B^{\prime}}$, a reflection in line m maps $\overline{A^{\prime} B^{\prime}}$ to $\overline{A^{\prime \prime} B^{\prime \prime}}, k \| m, A W=7$, and $Z A^{\prime \prime}=3$.
a. Name some congruent segments.
b. Does $W Z=X Y$? Explain.
c. What is the length of $\overline{B B^{\prime \prime}}$?

Solution

a. Here are some sets of congruent segments: $\overline{A B}, \overline{A^{\prime} B^{\prime}}$, and $\overline{A^{\prime \prime} B^{\prime \prime}} ; \overline{B X}$ and $\overline{X B^{\prime}} ; \overline{B^{\prime} Y}$ and $\overline{Y B^{\prime \prime}}$.
b. Yes, $W Z=X Y$ because $\overline{W Z}$ and $\overline{X Y}$ are opposite sides of a rectangle.
c. Because $B B^{\prime \prime}=A A^{\prime \prime}$, the length of $\overline{B B^{\prime \prime}}$ is $7+7+3+3$, or 20 units.

Exercises for Example 1

In the diagram $k \| m, \triangle X Y Z$ is reflected in line k, and $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ is reflected in line \boldsymbol{m}.

1. Name two segments parallel to $\overline{Y Y^{\prime \prime}}$.
2. If the length of $\overline{Z Z^{\prime \prime}}$ is 6 cm , what is the distance between k and m ?
3. A translation maps $\triangle X Y Z$ onto which triangle?
4. Which lines are perpendicular to $\overline{X X^{\prime \prime}}$?

\qquad

Reteaching with Practice
 For use with pages 421-428

EXAMPLE 2 Translations in a Coordinate Plane

Sketch a quadrilateral with vertices $A(0,4), B(-2,1)$, $C(0,-3)$, and $D(3,4)$. Then sketch the image of the quadrilateral after the translation $(x, y) \rightarrow(x+2, y-1)$.

Solution

Plot the points as shown. Shift each point 2 units to the right and 1 unit down to find the translated vertices.

Exercises for Example 2

In Exercises 5-8, copy figure PQRS and draw its image after the translation.
5. $(x, y) \rightarrow(x-4, y+1)$
6. $(x, y) \rightarrow(x, y-5)$
7. $(x, y) \rightarrow(x-2, y-2)$
8. $(x, y) \rightarrow(x+7, y+3)$

example 3 Finding Vectors

In the diagram, $\triangle A B C$ maps onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ by a translation. Write the component form of the vector that can be used to describe the translation.

Solution

Choose any vertex and its image, say A and A^{\prime}. To move from A to A^{\prime}, you move 3 units to the right and 5 units down. The component form of the vector is $\langle 3,-5\rangle$.

Exercises for Example 3

In Exercises 9 and 10, write the component form of the vector that describes the translation which maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$.
9. $A(3,6), B(1,0), C(4,8) ; A^{\prime}(1,2), B^{\prime}(-1,-4), C^{\prime}(2,4)$
10. $A(-6,-2), B(-5,3), C(1,-1) ; A^{\prime}(-3,-5), B^{\prime}(-2,0), C^{\prime}(4,-4)$

