Reteaching with Practice

For use with pages 404–410

Name

LESSON

Identify and use reflections in a plane and identify relationships between reflections and line symmetry.

Vocabulary

A transformation which uses a line that acts like a mirror, with an image reflected in the line, is called a **reflection.** The line which acts like a mirror in a reflection is called the **line of reflection.**

A figure in the plane has a **line of symmetry** if the figure can be mapped onto itself by a reflection in the line.

Theorem 7.1 Reflection Theorem

A reflection is an isometry.

EXAMPLE 1 Reflections in a Coordinate Plane

Graph the given reflection.

- **a.** A(3, 2) in the y-axis
- **b.** B(1, -3) in the line y = 1

SOLUTION

- **a.** Since *A* is three units to the right of the *y*-axis, its reflection, *A'*, is three units to the left of the *x*-axis.
- **b.** Start by graphing y = 1 and *B*. From the graph, you can see that *B* is 4 units below the line of reflection. This implies that its reflection, B', is 4 units above the line.

Exercises for Examp	ole 1

In Exercises 1–8, graph the given reflection.

- **1.** C(-1, 4) in the *x*-axis
- **3.** E(4, -2) in the line y = 3
- **5.** G(3, 5) in the line x = 1
- 7. I(4, 5) in the line x = -2

- **2.** D(0, 3) in the *y*-axis
- **4.** F(1, -2) in the line y = -2
- 6. H(-3, -1) in the line x = 4
- **8.** J(-2, 3) in the line y = 1

EXAMPLE 2 Finding Lines of Symmetry

Triangles can have different lines of symmetry depending on their shape. Find the number of lines of symmetry a triangle has when it is one of the following.

a. equilateral b. isosceles

32

Reteaching with Practice

For use with pages 404–410

SOLUTION

Name

a. Equilateral triangles have three lines of symmetry.

b. Isosceles triangles have one line of symmetry.

c. Scalene triangles do not have any lines of symmetry.

Exercises for Example 2

Find the number of lines of symmetry for the figure described.

9. Rectangle

10. Kite

EXAMPLE 3 Finding a Minimum Distance

Find point C on the x-axis so AC + BC is a minimum where A is (-1, 5) and B is (5, 1).

SOLUTION

Reflect *A* in the *x*-axis to obtain A'(-1, -5). Then, draw $\overline{A'B}$. Label the point at which this segment intersects the *x*-axis as *C*. Because $\overline{A'B}$ represents the shortest distance between A' and *B*, and AC = A'C, you can conclude that at point *C* a minimum length is obtained. Next, to find the coordinates of *C*, find an

equation for $\overline{A'B}$. Slope of $\overline{A'B} = \frac{1 - (-5)}{5 - (-1)} = \frac{6}{6} = 1$

Then use this slope and A'(-1, -5) in $y - y_o = m(x - x_o)$ to get y + 5 = x + 1 or y = x - 4. Because C is on the x-axis, y = 0, so x = 4. Therefore, C is (4, 0).

Exercises for Example 3

In Exercises 11–13, find point C on the x-axis so AC + CB is a minimum.

11. A(-1, -2), B(8, -4) **12.** A(1, 4), B(8, 3)

A'