Reteaching with Practice

For use with pages 396–402

NAME

LESSON

GOALS Identify the three basic rigid transformations.

VOCABULARY

Figures in a plane can be reflected, rotated, or translated to produce new figures. The new figure is called the **image**, and the original figure is called the preimage.

The operation that *maps*, or moves, the preimage onto the image is called a transformation.

An **isometry** is a transformation that preserves lengths.

Naming Transformations **EXAMPLE 1**

Use the graph of the transformation at the right.

- **a.** Name and describe the transformation.
- **b.** Name the coordinates of the vertices of the image.
- **c.** Is $\triangle ABC$ congruent to its image?

SOLUTION

- **a**. The transformation is a reflection in the *y*-axis.
- **b.** The coordinates of the vertices of the image, $\triangle A'B'C$, are A'(-4, 0), B'(-4, 4), and C(0, 4).
- **c.** Yes, $\triangle ABC$ is congruent to its image $\triangle A'B'C$. One way to show this would be to use the Distance Formula to find the lengths of the sides of both triangles. Then use the SSS Congruence Postulate.

Exercises for Example 1

In Exercises 1–3, use the graph of the transformation to answer the questions.

- **1.** Name and describe the transformation.
- 2. Name the coordinates of the vertices of the image.
- **3**. Name two angles with the same measure.

Which of the following transformations appear to be isometries?

Copyright © McDougal Littell Inc. All rights reserved.

Geometry

Chapter 7 Resource Book

Reteaching with Practice

For use with pages 396-402

SOLUTION

- a. This transformation appears to be an isometry. The preimage on the left is rotated about a point to produce a congruent image on the right.
- **b**. This transformation is not an isometry. The parallelogram on the top is not congruent to its preimage on the bottom.
- c. This transformation appears to be an isometry. The trapezoid on the left is reflected in a line to produce a congruent trapezoid on the right.

Exercises for Example 2

State whether the transformation appears to be an isometry.

EXAMPLE 3 Preserving Length and Angle Measure

In the diagram, ABCD is mapped onto WXYZ. The mapping is a reflection. Given that $ABCD \rightarrow WXYZ$ is an isometry, find the length of \overline{WX} and the measure of $\angle Y$.

SOLUTION

Because the transformation is an isometry, the two figures are congruent. So, WX = AB = 7 and $m \angle Y = m \angle C = 90^{\circ}$.

.....

Exercises for Example 3

In Exercises 6 and 7, find the value of each variable, given that the transformation is an isometry.

