Group Activity for use with Lesson 7.5

ACTIVITY 7.5

Developing Concepts

GROUP ACTIVITY

Work with a partner.

MATERIALS

- graph paper
- ruler
- protractor
- compass

Multiple Transformations

• **QUESTION** Does the order in which two transformations are performed affect the final image?

EXPLORING THE CONCEPT

1 Draw $\triangle ABC$ with vertices A(1, 1), B(4, 2), and C(3, 4). Reflect $\triangle ABC$ in the *x*-axis to obtain $\triangle A'B'C'$.

2 Rotate $\triangle A'B'C'$ 90° clockwise about *P*(4, -5) to obtain $\triangle A''B''C''$.

INVESTIGATE

- **1.** Name the coordinates of $\triangle A''B''C''$.
- **2**. Repeat **Steps 1** and **2**, but switch the order of the transformations by performing the rotation first and the reflection second. Name the coordinates of $\triangle A''B''C''$.

MAKE A CONJECTURE

3. Does the order in which transformations are completed affect the final image?

INVESTIGATE

- **4.** Copy $\triangle HJK$. Reflect $\triangle HJK$ in the line x = 6 to obtain $\triangle H'J'K'$. Then translate $\triangle H'J'K'$ using $(x, y) \rightarrow (x, y 6)$ to obtain $\triangle H''J''K''$. Name the coordinates of $\triangle H''J''K''$.
- 5. Repeat Exercise 4, but switch the order of the transformations. Name the coordinates of △H"J"K" and compare them with the coordinates of △H"J"K" from Exercise 4. What do you notice?

EXTENSION

CRITICAL THINKING Use the Distance Formula to show that the transformation that maps $\triangle ABC$ onto $\triangle A''B''C''$ in **Step 2** is an isometry.