Reteaching with Practice

For use with pages 330-337

NAME

GOAL Use some properties of parallelograms

VOCABULARY

A **parallelogram** is a quadrilateral with both pairs of opposite sides parallel.

Theorem 6.2

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

Theorem 6.3

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

Theorem 6.4

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

Theorem 6.5

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

EXAMPLE 1 Using Properties of Parallelograms

ABCD is a parallelogram. Find the lengths and angle measures.

a. <i>AD</i> b. <i>EC</i>	
---	--

c. $m \angle ADC$ **d.** $m \angle BCD$

SOLUTION

- **a.** AD = BC from Theorem 6.2. So, AD = 8.
- **b.** From Theorem 6.5, the two diagonals of *ABCD* bisect each other. Therefore, AE = EC. So, EC = 5.
- **c.** $m \angle ABC = m \angle ADC$ from Theorem 6.3. $m \angle ABC = m \angle ABE + m \angle CBE$ by the Angle Addition Postulate. Substituting, $m \angle ADC = 65^\circ + 45^\circ = 110^\circ$.
- **d.** $m \angle BCD + m \angle ADC = 180^{\circ}$ by Theorem 6.4. So $m \angle BCD = 180^{\circ} m \angle ADC$ by the Subtraction Property of Equality. By substituting and simplifying, $m \angle BCD = 70^{\circ}$.

Exercises for Example 1

Find the value of each variable in the parallelogram.

Name

Reteaching with Practice

For use with pages 330–337

EXAMPLE 2 Using Algebra with Parallelograms

Use algebra to find the value of each variable in the parallelogram.

SOLUTION

Set up equations based upon the properties of parallelograms provided in Theorems 6.2 through 6.5.

- **a.** Because opposite sides of a parallelogram are congruent (Theorem 6.2), 2x 6 = 4. Solving for x yields 2x = 10 which means x = 5. Also by Theorem 6.2, 2y = 8, so y = 4.
- **b.** From Theorem 6.2, 2x 1 = x + 5. Thus, x = 6. From Theorem 6.5, 3x + 1 = 10. Thus, 3x = 9 which means x = 3.

Exercises for Example 2

Find the value of each variable in the parallelogram.

32

.....