\qquad

Technology Activity

For use with pages 302-308

GOAL To demonstrate the Hinge Theorem

This activity begins by constructing an example of the Hinge Theorem and then takes a look at a specific problem.

Activity

(1) Construct two triangles with two sides of one triangle congruent to two sides of another triangle, making the included angles different measures.
(2) Measure the included angles.
(3) Measure the lengths of the third sides.
(4) Drag a vertex of one of the triangles and compare the measures of the included angles and the lengths of the third sides.
 angles are congruent.

Exercises

1. When $m \angle B A C=m \angle E D G$, what can you conclude about $B C$ and $E G$? What can you conclude about $\triangle A B C$ and $\triangle D E G$?
2. In the figure below, $\overline{A C} \cong \overline{D G}, \overline{A B} \cong \overline{D F}, B C=5.0$ centimeters, $m \angle B A C=56^{\circ}$, and $m \angle G D F=90^{\circ}$. Construct the figure using geometry software. What is a possible length for $\overline{F G}$?

\qquad

Technology Activity Keystrokes

For use with pages 302-308

TI-92

1. Construct two triangles with two sides of one triangle congruent to two sides of another triangle and making the included angles of different measures.
Construct scalene triangle $A B C$ using the segment command. (F 2 5)
To construct the second triangle, construct a ray (F2 6) and label the endpoint D.

(Move cursor to segment $A B$.) ENTER]
Construct point E as the intersection between the circle and the ray. (F2 3)
Construct segment $D E$. (F2 5)
Use compass (F4 8) to copy segment $A C$.
Construct segment $D F$. (F2 5) $[($ Place cursor on point D.) ENTER
(Move cursor to any point on the circle.) ENTER F]
Construct segment EF. (F2 5)
Hide the two circles and the ray. (F7 1)
2. Measure angles A and D.

F6 3 (Place cursor on point C.) ENTER (Move cursor to Point A.) ENTER
(Move cursor to point B.) ENTER A $=$ Repeat for angle D.
3. Measure the lengths of sides $B C$ and $E F$. (FG 1)
4. Drag a vertex of one of the triangles and compare the measures of angles A and D and also the lengths of sides $B C$ and $E F$.
F1 1 (Place cursor on point.) ENTER (Use the drag key and the cursor pad to drag the point.)
5. Drag a vertex so that the measures of the included angles are congruent.

F1 1 (Place cursor on point.) ENTER (Use the drag key and the cursor pad to drag the point.)
\qquad

Technology Activity Keystrokes

For use with pages 302-308

SKETCHPAD

1. Construct two triangles with two sides of one triangle congruent to two sides of another triangle and making the included angles of different measure.
Construct triangle $A B C$ by selecting segment from the straightedge tools. Construct ray $D E$ not on triangle $A B C$ by selecting ray from the straightedge tools.
Use the selection arrow tool to select point D and segment $A B$.
Choose Circle by Center and Radius from the Construct menu.
Construct intersection point F of the circle and ray $D E$ using the point tool.
Construct segment $D F$ using the segment straightedge tool.
Use the selection arrow tool to select point D and segment $A C$.

Choose Circle by Center and Radius from the Construct menu.

Construct a segment from point D to any point on the second circle using the segment straightedge tool.
Construct segment $F G$.
Use the selection arrow tool to select the two circles, ray $D E$, and point E. Then choose Hide Objects from the Display menu.
2. Measure angles A and D. To measure angle A, choose the selection arrow tool, select point C, hold the shift key down, and select points A and B. Then choose Angle from the Measure menu. Repeat for angle D. Before selecting an angle, be sure to click anywhere in the work area to deselect the previous points.
3. Measure the lengths of sides $B C$ and $F G$. Use the selection arrow tool to select sides $B C$ and $F G$. Choose Length from the Measure menu.
4. Use the translate selection arrow tool to drag vertex G and compare the measures of angles A and D and also the lengths of sides $B C$ and $F G$.
5. Drag vertex G until the measures of the included angles are congruent.

