\qquad

Practice A

For use with pages 287-293

Use the diagram of $\triangle A B C$ where D, E, and F are the midpoints of the sides.

1. $\overline{D E} \|$ \qquad
2. $\overline{F E} \|$ \qquad ?
3. If $A B=14$, then $E F=$ \qquad ?.
4. If $B E=8$, then $D F=$ \qquad .

5. If $D E=6$, then $A C=$ \qquad .

Use the diagram of $\triangle J K L$ where R, S, and T are the midpoints of the sides, $R K=3, K S=4$, and $\overline{J K} \perp \overline{K L}$.
6. Find the length of $\overline{R S}$.
7. Find the length of $\overline{J K}$.
8. Find the length of $\overline{R T}$.
9. Find the perimeter of $\triangle J K L$.

10. Name all of the right angles in the diagram.

Use the diagram of $\triangle M N O$ where X, Y, and Z are the midpoints of the sides.

11. If $Y Z=3 x+1$, and $M N=10 x-6$ then $Y Z=$ \qquad ? .
12. If $Y X=x-1$, and $M O=3 x-7$ then $M O=$ \qquad ? .
13. If $m \angle M O N=48^{\circ}$, then $m \angle M Z X=$ \qquad ? .
14. If $m \angle M X Z=37^{\circ}$, then $m \angle M N O=$? .
15. Name a triangle that appears to be congruent to $\triangle Z O Y$.

Use the graph shown.

16. Find the coordinates of the endpoints of each midsegment.
17. Use the slope and the Distance Formula to verify that the Midsegment Theorem is true for $\overline{D F}$.
18. Use the slope and the Distance Formula to verify that the Midsegment Theorem is true for $\overline{F E}$.
19. Use the slope and the Distance Formula to verify that the Midsegment Theorem is true for $\overline{D E}$.
20. Determine the perimeter of $\triangle A B C$ and $\triangle D E F$. What is the
 ratio of their perimeters, $\triangle A B C$ to $\triangle D E F$?
