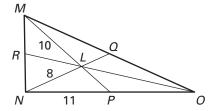

Practice A

For use with pages 279–285

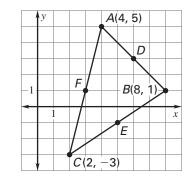
Use the diagram shown and the given information to decide in each case whether \overline{AD} is a *perpendicular bisector*, an *angle bisector*, a *median*, or an *altitude* of $\triangle ABC$.


- 1. $\overline{DB} \cong \overline{DC}$
- **2.** $\angle BAD \cong \angle CAD$
- **3.** $\overline{DB} \cong \overline{DC}$ and $\overline{AD} \perp \overline{BC}$
- **4.** $\overline{AD} \perp \overline{BC}$
- **5.** $\triangle BAD \cong \triangle CAD$

Use the figure shown and the given information.

L is the centroid of $\triangle MNO$, NP = 11, ML = 10, and NL = 8.

- **6.** Find the length of \overline{PO} .
- **7.** Find the length of \overline{MP} .
- **8.** Find the length of \overline{LQ} .
- **9.** Find the length of \overline{NQ} .
- **10.** Find the perimeter of $\triangle NLP$.



Decide whether the statement is *true* or *false*. Illustrate your answer with a sketch.

- **11**. The median of a triangle could also be the perpendicular bisector.
- **12.** The altitude of a triangle could also be the perpendicular bisector.
- **13**. The medians of a triangle always intersect inside the triangle.
- **14.** The altitudes of a triangle always intersect inside the triangle.

Use the graph shown.

- **15.** Find the coordinates of D, the midpoint of \overline{AB} .
- **16.** Find the length of the median \overline{CD} .
- **17.** Find the coordinates of E, the midpoint of \overline{BC} .
- **18.** Find the length of the median \overline{AE} .

Complete the constructions described.

- **19.** Draw a large obtuse, scalene triangle $\triangle ABC$. Construct the altitude from the obtuse angle.
- **20.** Draw a large right, scalene triangle $\triangle ABC$. Construct the orthocenter.