Reteaching with Practice

For use with pages 272-278

GOAL

Use properties of perpendicular bisectors of a triangle and use properties of angle bisectors of a triangle

VOCABULARY

A **perpendicular bisector** of a triangle is a line (or ray or segment) that is perpendicular to a side of the triangle at the midpoint of the side.

When three or more lines (or rays or segments) intersect in the same point, they are called **concurrent lines** (or rays or segments).

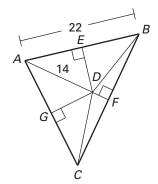
The point of intersection of concurrent lines is called the **point of concurrency.**

The point of concurrency of the perpendicular bisectors of a triangle is called the **circumcenter** of the triangle.

An **angle bisector** of a triangle is a bisector of an angle of the triangle.

The point of concurrency of the angle bisectors is called the **incenter** of the triangle.

Theorem 5.5 Concurrency of Perpendicular Bisectors of a Triangle The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.


Theorem 5.6 Concurrency of Angle Bisectors of a Triangle
The angle bisectors of a triangle intersect at a point that is equidistant
from the sides of the triangle.

EXAMPLE 1

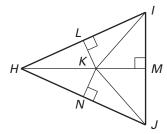
Using Perpendicular Bisectors

The perpendicular bisectors of $\triangle ABC$ meet at point D.

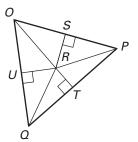
- **a.** Find *DB*.
- **b.** Find AE.

SOLUTION

- **a.** You are given that the perpendicular bisectors of $\triangle ABC$ meet at D. By Theorem 5.5, D is equidistant from the vertices A, B, and C of the triangle. Since you are given that AD = 14, it follows that DB = 14.
- **b.** You are given that \overline{ED} is a perpendicular bisector of side \overline{AB} . By definition of a perpendicular bisector, E is the midpoint of \overline{AB} . Because you are given that AB = 22, it follows that AE = 11.

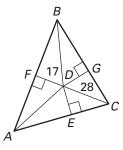

Reteaching with Practice

For use with pages 272-278


Exercises for Example 1

Use the given information to find the indicated lengths.

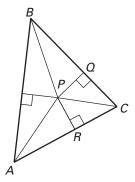
- **1.** The perpendicular bisectors of $\triangle HIJ$ meet at K, IJ = 18, and KJ = 12.
 - **a.** Find *HK*.
 - **b.** Find *IM*.


- **2.** R is the circumcenter of $\triangle OPQ$, OS = 10, QR = 12, and PQ = 22.
 - **a.** Find *OP*.
 - **b.** Find *RP*.
 - **c.** Find OR.
 - **d.** Find TP.

EXAMPLE 2

Using Angle Bisectors

The angle bisectors of $\triangle ABC$ meet at point D. Find DE.



SOLUTION

By Theorem 5.6, point D is equidistant from the sides of $\triangle ABC$. Thus, FD = GD = ED. Since FD = 17 units and FD = ED, it follows that DE = 17.

Exercise for Example 2

3. The angle bisectors of $\triangle ABC$ meet at point *P*, PR = 3, and PC = 5. Find QP.

.....