Reteaching with Practice

For use with pages 264-271

NAME

LESSON

Use properties of perpendicular bisectors and use properties of angle bisectors to identify equal distances

VOCABULARY

A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a **perpendicular bisector.**

A point is **equidistant from two points** if its distance from each point is the same.

The **distance from a point to a line** is defined as the length of the perpendicular segment from the point to the line.

When a point is the same distance from a line as it is from another line, then the point is **equidistant from the two lines** (or rays or segments).

Theorem 5.1 Perpendicular Bisector Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Theorem 5.2 Converse of the Perpendicular Bisector Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Theorem 5.3 Angle Bisector Theorem

If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.

Theorem 5.4 Converse of the Angle Bisector Theorem If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.

EXAMPLE 1 Using Perpendicular Bisectors

In the diagram shown, \overrightarrow{EC} is the perpendicular bisector of \overrightarrow{AB} and $\overrightarrow{AF} \cong \overrightarrow{BF}$.

- **a.** Explain how you know that AC = BC.
- **b.** Explain why *F* is on \overrightarrow{EC} .

SOLUTION

- **a**. \overrightarrow{EC} bisects \overrightarrow{AB} , so AC = BC by the definition of bisector.
- **b.** $\overline{AF} \cong \overline{BF}$ and by definition of congruence, this means that AF = BF and hence *F* is equidistant from *A* and *B*. By Theorem 5.2, *F* is on the perpendicular bisector of \overline{AB} , which is \overrightarrow{EC} .

20

Reteaching with Practice

For use with pages 264–271

Name

Exercises for Example 1

Use the diagram shown. In the diagram, \overrightarrow{AB} is the perpendicular bisector of \overrightarrow{CD} .

- **1.** Find the value of *x*.
- **2.** Find the value of *y*.
- **3.** Is *E* on \overrightarrow{AB} ? Explain.

EXAMPLE 2 Using Bisector Theorems

Determine the correct measurement for the angle or segment given.

- **a.** ∠*DCB*
- **b.** \overline{FE}
- c. \overline{AC}

SOLUTION

- **a.** \overline{CD} is the angle bisector of $\angle ACB$ because $m \angle ACD = m \angle DCB$. Since you are given that $m \angle ACD = 55^{\circ}$, $m \angle DCB = 55^{\circ}$.
- **b.** By Theorem 5.3, *E* is equidistant from \overline{AC} and \overline{BC} . So FE = 8.
- **c.** Because \overline{CD} is the perpendicular bisector of \overline{AB} , then by Theorem 5.1 *C* is equidistant from *A* and *B*. Thus, AC = 20.

Exercises for Example 2

Determine the correct measurement for the angle or segment given.

- **4**. *EG*
- **5**. ∠*GDE*
- **6**. *ED*
- **7**. *HD*
- **8**. *FD*

21