\qquad

Reteaching with Practice

For use with pages 264-271

GOAL Use properties of perpendicular bisectors and use properties of angle bisectors to identify equal distances

Vocabulary

A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector.

A point is equidistant from two points if its distance from each point is the same.

The distance from a point to a line is defined as the length of the perpendicular segment from the point to the line.
When a point is the same distance from a line as it is from another line, then the point is equidistant from the two lines (or rays or segments).

Theorem 5.1 Perpendicular Bisector Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
Theorem 5.2 Converse of the Perpendicular Bisector Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Theorem 5.3 Angle Bisector Theorem

If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.

Theorem 5.4 Converse of the Angle Bisector Theorem
If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.

example 1 Using Perpendicular Bisectors

In the diagram shown, $\overrightarrow{E C}$ is the perpendicular bisector of $\overline{A B}$ and $\overline{A F} \cong \overline{B F}$.
a. Explain how you know that $A C=B C$.
b. Explain why F is on $\overrightarrow{E C}$.

Solution

a. $\overrightarrow{E C}$ bisects $\overline{A B}$, so $A C=B C$ by the definition of bisector.
b. $\overline{A F} \cong \overline{B F}$ and by definition of congruence, this means that $A F=B F$ and hence F is equidistant from A and B. By Theorem 5.2, F is on the perpendicular bisector of $\overline{A B}$, which is $\overrightarrow{E C}$.
\qquad
\qquad

Reteaching with Practice

For use with pages 264-271

Exercises for Example 1

Use the diagram shown. In the diagram, $\overleftrightarrow{A B}$ is the perpendicular bisector of $\overline{C D}$.

1. Find the value of x.
2. Find the value of y.
3. Is E on $\overleftrightarrow{A B}$? Explain.

EXAMPLE 2 Using Bisector Theorems

Determine the correct measurement for the angle or segment given.
a. $\angle D C B$
b. $\overline{F E}$
c. $\overline{A C}$

Solution

a. $\overline{C D}$ is the angle bisector of $\angle A C B$ because $m \angle A C D=m \angle D C B$. Since you are given that $m \angle A C D=55^{\circ}, m \angle D C B=55^{\circ}$.
b. By Theorem 5.3, E is equidistant from $\overline{A C}$ and $\overline{B C}$. So $F E=8$.
c. Because $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$, then by Theorem 5.1 C is equidistant from A and B. Thus, $A C=20$.

Exercises for Example 2

Determine the correct measurement for the angle or segment given.
4. $\overline{E G}$
5. $\angle G D E$
6. $\overline{E D}$
7. $\overline{H D}$
8. $\overline{F D}$

