CHAPTER

Chapter Standardized Test

TEST-TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move on to the next question. You can revisit a difficult problem later with a fresh perspective.

1. MULTIPLE CHOICE In the diagram below,

 \overrightarrow{PQ} is the perpendicular bisector of \overrightarrow{FG} . What are the values of x and y?

(A)
$$x = 9, y = 1$$

(B) $x = 9, y = 4$
(C) $x = 4, y = 9$
(D) $x = \frac{1}{2}, y = 9$
(E) $x = 9, y = 6$

2. MULTIPLE CHOICE In the diagram, \overrightarrow{ST} bisects $\angle RSU$. Which segments do you know are congruent?

- (A) $\overline{SR} \cong \overline{SU}$ (B) $\overline{VR} \cong \overline{WU}$ (C) $\overline{RT} \cong \overline{UT}$ (D) $\overline{QV} \cong \overline{QW}$ (E) $\overline{SQ} \cong \overline{QT}$
- **3. MULTIPLE CHOICE** Which of the following statements are true about the circumcenter *P* of an isosceles triangle?
 - I. Point *P* is equidistant from the sides.
 - **II.** Point *P* is equidistant from the vertices.
 - **III.** Point *P* is two thirds of the distance from each vertex to the midpoint of the opposite side.
 - (A) I only (B) II only
 - © III only D I and II
 - E none of these

4. MULTIPLE CHOICE What are the coordinates of the centroid *C* of a triangle whose vertices are F(-12, 1), G(-2, 1), and H(-7, -11)?

(− 7, −7)	$\textcircled{B}\left(-7,-\frac{9}{2}\right)$
$\bigcirc \left(-7, -\frac{5}{4}\right)$	$\textcircled{D}\left(-7,-\frac{7}{2}\right)$
E (-7, -3)	

5. MULTIPLE CHOICE Use the diagram to find the perimeter of $\triangle NPL$.

6. MULTIPLE CHOICE Points *D*, *E*, and *F* are the midpoints of the sides of $\triangle ABC$. Which of the following statements is false?

- (A) The intersection of \overline{AE} and \overline{BD} is the orthocenter of $\triangle ABC$.
- $\textcircled{B} \overline{EF} \parallel \overline{CA}$
- $\bigcirc m \angle A < m \angle C$

(**D**)
$$DE = \frac{1}{2}AB$$

(**E**) \overline{BD} is a median of $\triangle ABC$.

- **7. MULTIPLE CHOICE** A triangle has two sides that have lengths of 16 inches and 28 inches. Which of the following lengths could *not* represent the length of the third side?
 - (A) 12 in. (B) 26 in. (C) 33 in. (D) 40 in. (E) 43 in.
- **8. QUANTITATIVE COMPARISON** Two quantities are described below.

Choose the statement that is true.

- A The quantity in column A is greater.
- **B** The quantity in column B is greater.
- \bigcirc The two quantities are equal.
- **D** The relationship cannot be determined from the given information.

MULTI-STEP PROBLEM In Exercises 9–12, use \triangle *GHJ* at the right.

- **9.** What is the sum of *x* and *y*?
- **10.** Which measure is greater, x° or y° ?
- **11.** Which of the following is true?

(A) x = 45 (B) x < 45 (C) x > 45

12. Describe the location of the intersection point of the perpendicular bisectors of $\triangle GHJ$.

MULTI-STEP PROBLEM In Exercises 13–15, use the following information.

In 1765, a Swiss mathematician, Leonhard Euler, proved that the centroid, orthocenter, and circumcenter of a triangle are all collinear. The line containing these three points is called the *Euler Line*. Euler also proved that the centroid of a triangle is one third the distance from the circumcenter to the orthocenter.

- **13.** Find equations of the lines that contain the medians. Use the equations to find the coordinates of the centroid of $\triangle ABC$.
- **14.** Find equations of the lines that contain the altitudes of $\triangle ABC$. Use the equations to find the coordinates of the orthocenter.
- **15.** In Exercise 30 on page 278, you found that the circumcenter of a $\triangle ABC$ with the given vertices is the point (9, -3).
 - **a.** Verify that the centroid and the orthocenter you found in Exercises 13 and 14 and the circumcenter above are all collinear.
 - **b**. Verify that the distance from the circumcenter to the centroid is one third the distance from the circumcenter to the orthocenter.

