\qquad

Reteaching with Practice

For use with pages 194-201

GOAL Classify triangles by their sides and angles and find angle measures in triangles

Vocabulary

A triangle is a figure formed by three segments joining three noncollinear points.
An equilateral triangle has three congruent sides.
An isosceles triangle has at least two congruent sides.
A scalene triangle has no congruent sides.
An acute triangle has three acute angles.
An equiangular triangle has three congruent angles.
A right triangle has one right angle.
An obtuse triangle has one obtuse angle.
The three angles of a triangle are the interior angles.
When the sides of a triangle are extended, the angles that are adjacent to the interior angles are exterior angles.

Theorem 4.1 Triangle Sum Theorem
The sum of the measures of the interior angles of a triangle is 180°.
Theorem 4.2 Exterior Angle Theorem
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.
Corollary to the Triangle Sum Theorem
The acute angles of a right triangle are complementary.

example 1 Classifying Triangles

Classify the triangles by their sides and angles.
a.

b.

Solution

a. $\triangle J K L$ has one obtuse angle and no congruent sides. It is an obtuse scalene triangle.
b. $\triangle X Y Z$ has one right angle and two congruent sides. It is a right isosceles triangle.
\qquad
\qquad

Reteaching with Practice

For use with pages 194-201

Exercises for Example 1

Classify the triangle by its sides and angles.

1.

2.

3.

example 2 Finding Angle Measures

a. Find the value of x.

b. Find the value of y.

Solution

a. From the Corollary to the Triangle Sum Theorem, you can write and solve an equation to find the value of x.

$$
\begin{array}{ll}
(4 x-5)^{\circ}+(3 x+11)^{\circ}=90^{\circ} \quad \begin{array}{l}
\text { The acute angles of a right triangle } \\
\text { are complementary. }
\end{array}
\end{array}
$$

$$
x=12 \quad \text { Solve for } x .
$$

b. You can apply the Exterior Angle Theorem to write and solve an equation that will allow you to find the value of y.

$$
\begin{aligned}
90^{\circ}+50^{\circ} & =2 y^{\circ} & & \text { Apply the Exterior Angle Theorem. } \\
y & =70 & & \text { Solve for } y .
\end{aligned}
$$

Exercises for Example 2

Find the value of \boldsymbol{x}.

4.

5.

