\qquad

Challenge: Skills and Applications

For use with pages 194-201

1. a. Find $m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5+m \angle 6$.
b. Find the sum of the measures of the exterior angles of the triangle.
c. Prove your result in part (b).

2. Use the diagram to find the values of x and y.

3. A polyhedron is a solid figure whose exterior surface is made up of polygons; each of these polygons is called a face of the polyhedron. The defect of a polyhedron is $(360 n-S)^{\circ}$, where n is the number of vertices and S is the sum of all of the angle measures in all of the faces. In this
 exercise, we will consider only those polyhedra whose faces are triangles.
a. Find the defects of the two polyhedra shown.
b. A regular icosahedron is a polyhedron with 20 faces that are equiangular triangles and with 12 vertices. What is the defect of a regular icosahedron?
c. Make a conjecture about the defect of a polyhedron whose faces are all equiangular triangles.
d. Do you think your conjecture is true for any polyhedron with triangular faces, even if the triangles are not equiangular? Explain.
4. a. Find $m \angle R Q T$ in terms of x and/or y.
b. What assumption would you need to make in order to find $m \angle Q S T$ in terms of x and/or y ? Under this assumption, what is $m \angle Q S T$?

5. a. Suppose the ratio of the angle measures of a triangle is $2: 3: 4$. Find the measure of each angle.
b. Suppose the ratio of the angle measures of a triangle is $a: b: c$, where a, b, and c are positive numbers. Find the measure of each angle in terms of a, b, and c.
