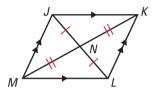

Chapter Standardized Test

- TEST-TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.
- **1. MULTIPLE CHOICE** What is the measure of $\angle J$?

- **A** 42°
- **B**) 90°
- **©** 96°
- **(D**) 138°
- (E) cannot be determined
- **2. MULTIPLE CHOICE** What is the measure of / *BCD*?


- **(A)** 35°
- **B**) 55°
- **©** 90°
- **(D)** 125°
- **E** cannot be determined
- **3. QUANTITATIVE COMPARISON** Four congruent equilateral triangles form the figures below.

Column A	Column B
perimeter	perimeter


Choose the statement that is true.

- (A) The perimeter in column A is greater.
- **B**) The perimeter in column B is greater.
- **C** The two perimeters are equal.
- **D** The relationship cannot be determined from the given information.

- **4. MULTIPLE CHOICE** Which postulate or theorem can be used to prove that $\triangle JML \cong \triangle LKJ$?
 - (A) SSS
 - (B) SAS
 - C ASA
 - (D) AAS
 - (E) none of the above

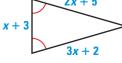
5. MULTIPLE CHOICE In figure JKLM, $\overline{JM} \parallel \overline{KL}$, $\overline{JK} \parallel \overline{ML}$, and N is the midpoint of \overline{JL} and \overline{MK} . Which statement or statements can be proved to be true?

- I. $\triangle JNM \cong \triangle LNK$
- II. $\triangle JNK \cong \triangle LNM$
- III. $\triangle JMK \cong \triangle JKL$
- (A) I only
- (B) I and II only
- **©** II and III only
- (**D**) I, II, and III
- (E) None are true.
- **6. MULTIPLE CHOICE** You are given the following information about $\triangle PQR$ and $\triangle XYZ$.

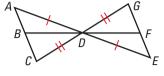
I.
$$\angle P \cong \angle X$$

II.
$$\angle O \cong \angle Y$$

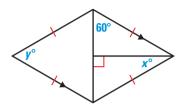
III.
$$\overline{PO} \cong \overline{XY}$$


IV.
$$\overline{OR} \cong \overline{YZ}$$

Which combination *cannot* be used to prove that $\triangle PQR \cong \triangle XYZ$?


- (A) I, II, and III
- **B** II, III, and IV
- **©** I, III, and IV
- **D** I, II, and IV
- (E) All combinations can be used.
- **7. MULTIPLE CHOICE** What is the value of x?
 - **A** $\frac{3}{5}$

(E) 55

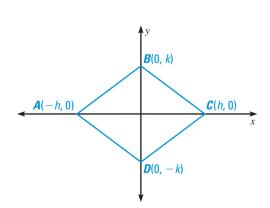

- **B**) 3
- **©** 6
- **(D)** 8

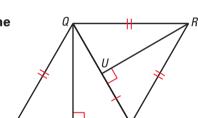
- **8. MULTIPLE CHOICE** You want to prove that $\overline{DB} \cong \overline{DF}$. As a first step, which pair of triangles would you prove congruent?
 - $\triangle ADB$ and $\triangle GFD$
 - **(B)** $\triangle ADB$ and $\triangle EDF$
 - \bigcirc $\triangle BDC$ and $\triangle FDG$
 - $\triangle ADC$ and $\triangle EDG$
 - $\triangle ABD$ and $\triangle EFD$

- **9. MULTIPLE CHOICE** Use the diagram to determine which statement is true.
 - x = 30 and y = 60
 - **B** x = 60 and y = 60
 - **©** x = 30 and y = 30
 - **D** x = 60 and y = 30
 - **E** x = 60 and y = 90

MULTI-STEP PROBLEM In Exercises 10–13, use the diagram and the information below.

GIVEN
$$ightharpoonup \overline{PT} \cong \overline{ST} \cong \overline{SU},$$


$$\overline{QP} \cong \overline{RQ} \cong \overline{RS},$$


$$\overline{QT} \perp \overline{PS}, \overline{RU} \perp \overline{QS}$$

- **10.** Show that $\triangle RUS \cong \triangle RUQ$.
- **11.** Show that $\triangle QTP \cong \triangle QTS$.
- **12.** Use your answers to Exercises 10 and 11 to show that $\triangle PQS \cong \triangle QRS$.
- **13.** Classify $\triangle RQS$ and $\triangle PQS$, using the most specific names you can. Explain your answers.

MULTI-STEP PROBLEM In Exercises 14–19, use figure ABCD.

- **14.** On graph paper, sketch figure *ABCD*.
- **15.** Draw diagonal \overline{AC} .
- **16.** Is $\triangle ABC \cong \triangle CDA$? Justify your answer.
- **17.** What kind of triangles are $\triangle ABC$ and $\triangle CDA$?
- **18.** Sketch diagonal \overline{BD} . What kind of triangles are $\triangle BCD$ and $\triangle DAB$?
- **19.** Writing A rhombus is a figure with four congruent sides. Figure ABCD is an example of a rhombus. Can you always draw a diagonal in any given rhombus so that the two triangles formed are isosceles? Explain.

