\qquad

Challenge: Skills and Applications

For use with pages 172-178

1. Let $P(3,4), Q(-3,-4)$, and $R(x, y)$ be three points in the coordinate plane.
a. Find the slopes of $\overline{P R}$ and $\overline{Q R}$.
b. If $\overline{P R} \perp \overline{Q R}$, find and simplify an equation involving x and y.
c. Describe the set of points R for which $\overline{P R} \perp \overline{Q R}$.
2. Let $A(1,4)$ and $B(-3,2)$ be two points in the coordinate plane.
a. If $C(x, y)$ is a third point such that $A C=B C$, use the Distance Formula to find and simplify an equation involving x and y.
b. Describe the set of points C with $A C=B C$. How is this set of points related to line $\overleftrightarrow{A B}$? (Hint: Compare slopes.)
3. In the diagram, M is the midpoint of $\overline{O L}$, and $O M=K M$.
a. Use the Distance Formula to express the condition $O M=K M$ as an equation in terms of p, q, x, and y.
b. Find the product of the slopes $\overleftrightarrow{O K}$ and $\overleftrightarrow{K L}$ in terms of p, q, x, and y.
c. Use your result from part (a) to simplify the expression. (Hint: What can you substitute for $x^{2}-2 p x$?)
d. Use your results to write a theorem regarding the
 midpoint of a side of a triangle.
4. Suppose j is the line given by $y=m x+b$. Let (c, d) be a point on the line.
a. Find m in terms of b, c, and d.
b. Let k_{1} be the line that is perpendicular to j and passes through $(0,0)$.

Find an equation for k_{1} in terms of b, c, and d.
c. Let k_{2} be the line that is perpendicular to j and passes through (c, d). Find an equation for k_{2} in terms of b, c, and d.

