\qquad
\qquad

Reteaching with Practice
 For use with pages 143-149

GOAL Prove and use results about parallel lines and transversals and use properties of parallel lines to solve problems

Vocabulary

Postulate 15 Corresponding Angles Postulate If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.
Theorem 3.4 If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

Theorem 3.5 If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

Theorem 3.6 If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.

Theorem 3.7 If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

EXAMPLE 1 Using Properties of Parallel Lines

Given that $m \angle 1=32^{\circ}$, find each measure. Tell which postulate or theorem you use.
a. $m \angle 2$
b. $m \angle 3$
c. $m \angle 4$
d. $m \angle 5$

Solution

a. $m \angle 2=32^{\circ}$

Corresponding Angles Postulate
b. $m \angle 3=32^{\circ}$
c. $m \angle 4=180^{\circ}-m \angle 3=148^{\circ}$
d. $m \angle 5=32^{\circ}$

Alternate Exterior Angles Theorem
Linear Pair Postulate
Vertical Angles Theorem

Exercises for Example 1

Find each measure given that $m \angle 6=67^{\circ}$.

1. $m \angle 7$
2. $m \angle 8$
3. $m \angle 9$
4. $m \angle 10$
5. $m \angle 11$
6. $m \angle 12$
7. $m \angle 13$

Date \qquad

example 2 Using Properties of Parallel Lines

Use properties of parallel lines to find the value of x.

Solution

$$
\begin{aligned}
(x-8)^{\circ} & =55^{\circ} & & \text { Alternate Exterior Angles Theorem } \\
x & =63^{\circ} & & \text { Add. }
\end{aligned}
$$

Exercises for Example 2

Use properties of parallel lines to find the value of \boldsymbol{x}.
8.

9.

10.

11.

12.

13.

14.

15.

