\qquad

Challenge: Skills and Applications

For use with pages 136-141

1. Write a two-column proof.

Given:
$\angle P O T$ and $\angle T O S$ are a linear pair.
$\angle P O T \cong \angle T O S$
Prove:

$\angle Q O R$ and $\angle R O S$ are complementary.
2. Write a paragraph proof.

Given:
$j \perp k ; \angle 1 \cong \angle 3$
Prove:
$m \perp n$

3. Write a flow proof.

Given:
$\angle 1$ and $\angle 2$ are complementary;
$\angle 1$ and $\angle 4$ are complementary;
$\angle 4$ and $\angle 3$ are complementary.

Prove:

$\overleftrightarrow{A B} \perp \overleftrightarrow{B C}$
In Exercises 4-9, sketch the situtation, if possible, or explain why it is not possible.
4. $\angle Q O P$ and $\angle Q O R$ are complementary, but $\angle P O R$ is not a right angle.
5. $\angle W X Y$ and $\angle W X Z$ are supplementary, and $\angle Y X Z$ is a right angle.
6. $\overrightarrow{E G}$ bisects $\angle D E F$, and $\overrightarrow{E G} \perp \overleftrightarrow{D E}$.
7. $\angle D E G$ and $\angle G E F$ are complementary, $\overrightarrow{E G} \perp \overrightarrow{D F}$, and $\overrightarrow{E G}$ bisects $\angle D E F$.
8. There are three lines, p, q, and r, such that $p \perp q, q \perp r$, and $p \perp r$.
9. A, B, and C are distinct points such that A and B are on line $j ; \overleftrightarrow{A C} \perp j ; \overleftrightarrow{B C} \perp j$.

