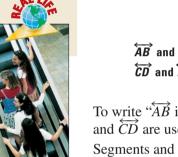
3.1

What you should learn

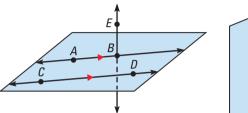
GOAL 1 Identify relationships between lines.

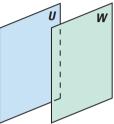

GOAL 2 Identify angles formed by transversals.

Why you should learn it

To describe and understand real-life objects. such as the escalator in

Exs. 32-36.




Lines and Angles

RELATIONSHIPS BETWEEN LINES

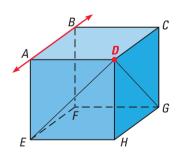
Two lines are **parallel lines** if they are coplanar and do not intersect. Lines that do not intersect and are not coplanar are called **skew lines**. Similarly, two planes that do not intersect are called **parallel planes**.

 \overrightarrow{AB} and \overrightarrow{CD} are parallel lines. \overrightarrow{CD} and \overrightarrow{BE} are skew lines.

Planes U and W are parallel planes.

To write " \overrightarrow{AB} is parallel to \overrightarrow{CD} ," you write $\overrightarrow{AB} \parallel \overrightarrow{CD}$. Triangles like those on \overrightarrow{AB} and \overleftarrow{CD} are used on diagrams to indicate that lines are parallel.

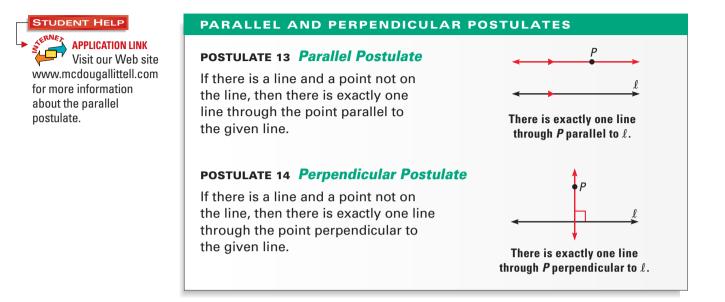
Segments and rays are parallel if they lie on parallel lines. For example, $\overline{AB} \parallel \overline{CD}$.


EXAMPLE 1 Identifying Relationships in Space

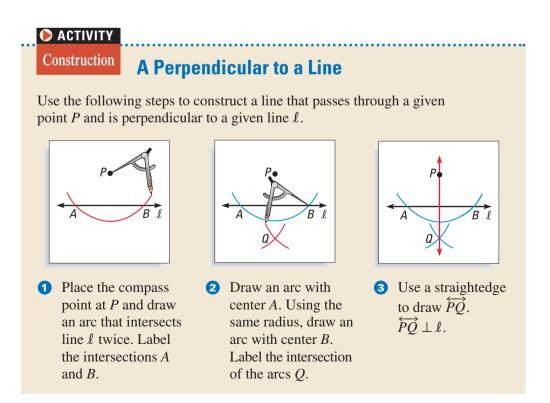
Think of each segment in the diagram as part of a line. Which of the lines appear to fit the description?

- **a.** parallel to \overrightarrow{AB} and contains D
- **b.** perpendicular to \overrightarrow{AB} and contains D
- **c.** skew to \overrightarrow{AB} and contains D
- **d**. Name the plane(s) that contain D and appear to be parallel to plane ABE.

SOLUTION

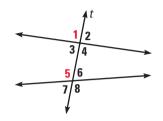

- **a.** \overrightarrow{CD} , \overrightarrow{GH} , and \overrightarrow{EF} are all parallel to \overrightarrow{AB} , but only \overrightarrow{CD} passes through D and is parallel to \overrightarrow{AB} .
- **b**. \overrightarrow{BC} , \overrightarrow{AD} , \overrightarrow{AE} , and \overrightarrow{BF} are all perpendicular to \overrightarrow{AB} , but only \overrightarrow{AD} passes through D and is perpendicular to \overrightarrow{AB} .
- **c.** \overrightarrow{DG} , \overrightarrow{DH} , and \overrightarrow{DE} all pass through D and are skew to \overrightarrow{AB} .
- **d.** Only plane *DCH* contains *D* and is parallel to plane *ABE*.

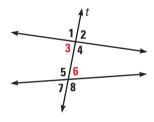
STUDENT HELP


Look Back For help identifying perpendicular lines, see p. 79.

Notice in Example 1 that, although there are many lines through *D* that are skew to \overrightarrow{AB} , there is only one line through *D* that is parallel to \overrightarrow{AB} and there is only one line through *D* that is perpendicular to \overrightarrow{AB} .

You can use a compass and a straightedge to construct the line that passes through a given point and is perpendicular to a given line. In Lesson 6.6, you will learn why this construction works.


You will learn how to construct a parallel line in Lesson 3.5.



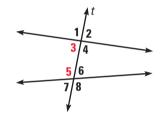
IDENTIFYING ANGLES FORMED BY TRANSVERSALS

A **transversal** is a line that intersects two or more coplanar lines at different points. For instance, in the diagrams below, line t is a transversal. The angles formed by two lines and a transversal are given special names.

Two angles are **corresponding angles** if they occupy corresponding positions. For example, angles **1** and **5** are corresponding angles.

Two angles are **alternate interior**

angles if they lie between the two


lines on opposite sides of the

alternate interior angles.

transversal. Angles 3 and 6 are

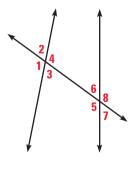
Two angles are alternate exterior

angles if they lie outside the two lines on opposite sides of the transversal. Angles 1 and 8 are alternate exterior angles.

Two angles are **consecutive interior angles** if they lie between the two lines on the same side of the transversal. Angles **3** and **5** are consecutive interior angles.

Consecutive interior angles are sometimes called **same side interior angles**.

EXAMPLE 2


E 2 Identifying Angle Relationships

List all pairs of angles that fit the description.

- **a.** corresponding **b.** alternate exterior
- **c.** alternate interior
- **d**. consecutive interior
- SOLUTION
 - **a.** $\angle 1$ and $\angle 5$ $\angle 2$ and $\angle 6$ $\angle 3$ and $\angle 7$ $\angle 4$ and $\angle 8$
 - **c.** $\angle 3$ and $\angle 6$ $\angle 4$ and $\angle 5$

b. $\angle 1$ and $\angle 8$ $\angle 2$ and $\angle 7$

d. $\angle 3$ and $\angle 5$ $\angle 4$ and $\angle 6$

GUIDED PRACTICE

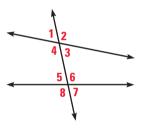
Vocabulary Check ✓ Concept Check ✓ Skill Check ✓

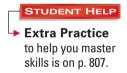
- **1.** Draw two lines and a transversal. Identify a pair of alternate interior angles.
- 2. How are skew lines and parallel lines alike? How are they different?

Match the photo with the corresponding description of the chopsticks.

A. skew

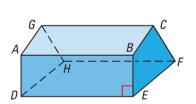
C. intersecting


5.

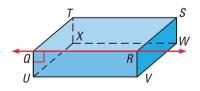


In Exercises 6–9, use the diagram at the right.

- **6**. Name a pair of corresponding angles.
- 7. Name a pair of alternate interior angles.
- 8. Name a pair of alternate exterior angles.
- **9**. Name a pair of consecutive interior angles.



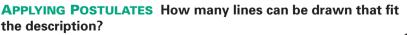
PRACTICE AND APPLICATIONS


LINE RELATIONSHIPS Think of each segment in the diagram as part of a line. Fill in the blank with *parallel*, *skew*, or *perpendicular*.

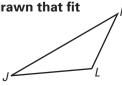
- **10.** \overrightarrow{DE} , \overrightarrow{AB} , and \overrightarrow{GC} are _____.
- **11.** \overrightarrow{DE} and \overrightarrow{BE} are _____.
- **12.** \overrightarrow{BE} and \overrightarrow{GC} are _____.
- **13.** Plane *GAD* and plane *CBE* are ____?

IDENTIFYING RELATIONSHIPS Think of each segment in the diagram as part of a line. There may be more than one right answer.

- **14.** Name a line parallel to \overleftrightarrow{QR} .
- **15.** Name a line perpendicular to \overrightarrow{QR} .
- **16.** Name a line skew to \overleftrightarrow{QR} .
- **17.** Name a plane parallel to plane *QRS*.

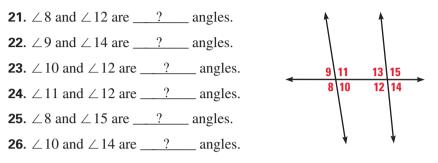


 STUDENT HELP


 ► HOMEWORK HELP

 Example 1: Exs. 10–20, 27–36

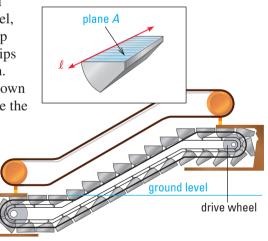
 Example 2: Exs. 21–26


- **18.** through *L* parallel to \overrightarrow{JK}
- **19.** through *L* perpendicular to \overrightarrow{JK}

2000 feet up an inclined cable to the Eiffel Tower. The photo above is from a performance in New York City. **20. S TIGHTROPE WALKING** Philippe Petit sometimes uses a long pole to help him balance on the tightrope. Are the rope and the pole at the left *intersecting*, *perpendicular*, *parallel*, or *skew*?

ANGLE RELATIONSHIPS Complete the statement with *corresponding*, *alternate interior*, *alternate exterior*, or *consecutive interior*.

ROMAN NUMERALS Write the Roman numeral that consists of the indicated segments. Then write the base ten value of the Roman numeral. For example, the base ten value of XII is 10 + 1 + 1 = 12.

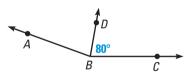

Roman numeral	I	v	х	L	м
Base ten value	1	5	10	50	1000

- **27.** Three parallel segments
- 28. Two non-congruent perpendicular segments
- **29.** Two congruent segments that intersect to form only one angle
- 30. Two intersecting segments that form vertical angles
- **31.** Four segments, two of which are parallel

ESCALATORS In Exercises 32–36, use the following information.

The steps of an escalator are connected to a chain that runs around a drive wheel, which moves continuously. When a step on an up-escalator reaches the top, it flips over and goes back down to the bottom. Each step is shaped like a wedge, as shown at the right. On each step, let plane *A* be the plane you stand on.

- **32.** As each step moves around the escalator, is plane *A* always parallel to ground level?
- **33**. When a person is standing on plane *A*, is it parallel to ground level?



- **34.** Is line ℓ on any step always parallel to ℓ on any other step?
- **35.** Is plane *A* on any step always parallel to plane *A* on any other step?
- **36.** As each step moves around the escalator, how many positions are there at which plane *A* is perpendicular to ground level?

		ING If two parallel planes e, explain why the lines of 1.				
	38. Writing What does "two lines intersect" mean?					
	39. \bigotimes CONSTRUCTION Draw a horizontal line l and a point <i>P</i> above l . Construct a line through <i>P</i> perpendicular to l .					
	40. \bigotimes CONSTRUCTION Draw a diagonal line <i>m</i> and a point <i>Q</i> below <i>m</i> . Construct a line through <i>Q</i> perpendicular to <i>m</i> .					
Test Preparation	41. MULTIPLE CHOICE In the diagram at the right, how many lines can be drawn through point P that are perpendicular to line l ?					
	(A) 0 (B) 1	C 2				
	D 3 E M	fore than 3				
	42. MULTIPLE CHOICE If two lines intersect, then they must be					
	(A) perpendicular	B parallel	© coplanar			
	D skew	(E) None of these				
★ Challenge	ANGLE RELATIONSHIPS Complete each statement. List all possible correct answers.					
EXTRA CHALLENGE	43. $\angle 1$ and $\underline{?}$ are corresponding angles.					
	44. $\angle 1$ and $\underline{?}$ are consecutive interior angles.					
	45. $\angle 1$ and $\underline{?}$ are alternate interior angles.					
www.mcdougallittell.com	46. $\angle 1$ and <u>?</u> are altern	ate exterior angles.	Н			

MIXED REVIEW

47. ANGLE BISECTOR The ray \overrightarrow{BD} bisects $\angle ABC$, as shown at the right. Find $m \angle ABD$ and $m \angle ABC$. (Review 1.5 for 3.2)

COMPLEMENTS AND SUPPLEMENTS Find the measures of a complement and a supplement of the angle. (Review 1.6 for 3.2)

48. 71°	49. 13°	50. 56°
51. 88°	52. 27°	53. 68°
54. 1°	55. 60°	56 . 45°

WRITING REASONS Solve the equation and state a reason for each step. (Review 2.4 for 3.2)

57. $x + 13 = 23$	58. <i>x</i> − 8 = 17	59. $4x + 11 = 31$
60. $2x + 9 = 4x - 29$	61. $2(x - 1) + 3 = 17$	62. $5x + 7(x - 10) = -94$