\qquad

Challenge: Skills and Applications

For use with pages 102-107

In Exercises 1-4, assume that B is the midpoint of $\overline{A C}, C$ is the midpoint of $\overline{B D}$, and D is the midpoint of $\overline{B E}$.

1. If $B C=7$, find $D E$ and $A E$.
2. If $C E=9$, find $A B$ and $A E$.
3. If the coordinate of A is 0 and the coordinate of B is 4 , find the coordinates of C, D, and E.
4. If the coordinate of B is 3 and the coordinate of E is -9 , find the coordinates of A, C, and D.

In Exercises 5-8, assume that M is the midpoint of $\overline{U V}, X$ is the midpoint of $\overline{U M}$, and Y is the midpoint of $\overline{X V}$.
5. If $U V=16$, find $U X$ and $X Y$.
6. If $M Y=5$, find $X Y$ and $U V$.
7. If the coordinate of X is 7 and the coordinate of Y is 13 , find the coordinates of U, M, and V.
8. If the coordinate of U is 2 and the coordinate of M is -10 , find the coordinates of X, Y, and V.

In Exercises 9-11, use the diagram shown. Assume that O is the midpoint of $N P, O$ is the midpoint of $M Q$, and $\angle N$ and $\angle P$ are right angles.
9. If $M N=15$ and $O P=8$, find $N O$ and $M O$.
10. If $O P=28$ and $P Q=45$, find $M O$ and $M Q$.
11. If $M O=65$ and $N P=66$, find $P Q$ and $M Q$.

12. Write a two-column proof. You may use the Pythagorean theorem as a reason.
Given: $A D=13, C D=x, B D=12$, $\overline{B D} \cong \overline{A C}, \angle C$ is a right angle.
Prove: $x^{2}=25$

