Name

LESSON

Challenge: Skills and Applications

For use with pages 102–107

In Exercises 1–4, assume that *B* is the midpoint of \overline{AC} , *C* is the midpoint of \overline{BD} , and *D* is the midpoint of \overline{BE} .

- **1.** If BC = 7, find DE and AE.
- **2.** If CE = 9, find AB and AE.
- **3.** If the coordinate of *A* is 0 and the coordinate of *B* is 4, find the coordinates of *C*, *D*, and *E*.
- **4.** If the coordinate of *B* is 3 and the coordinate of *E* is -9, find the coordinates of *A*, *C*, and *D*.

In Exercises 5–8, assume that *M* is the midpoint of \overline{UV} , *X* is the midpoint of \overline{UM} , and *Y* is the midpoint of \overline{XV} .

- **5.** If UV = 16, find UX and XY.
- **6.** If MY = 5, find XY and UV.
- **7.** If the coordinate of *X* is 7 and the coordinate of *Y* is 13, find the coordinates of *U*, *M*, and *V*.
- **8.** If the coordinate of U is 2 and the coordinate of M is -10, find the coordinates of X, Y, and V.

In Exercises 9–11, use the diagram shown. Assume that O is the midpoint of \overline{NP} , O is the midpoint of \overline{MQ} , and $\angle N$ and $\angle P$ are right angles.

- **9.** If MN = 15 and OP = 8, find NO and MO.
- **10.** If OP = 28 and PQ = 45, find MO and MQ.
- **11.** If MO = 65 and NP = 66, find PQ and MQ.
- **12.** Write a two-column proof. You may use the Pythagorean theorem as a reason.

Given: AD = 13, CD = x, BD = 12, $\overline{BD} \cong \overline{AC}$, $\angle C$ is a right angle.

Prove: $x^2 = 25$

Date