Reteaching with Practice

For use with pages 96-101

GOAL

Use properties from algebra and use properties of length and measure to justify segment and angle relationships

VOCABULARY

Algebraic Properties of Equality

Let a, b, and c be real numbers.

Addition Property If a = b, then a + c = b + c.

Subtraction Property If a = b, then a - c = b - c.

Multiplication Property If a = b, then ac = bc.

Division Property If a = b and $c \neq 0$, then $a \div c = b \div c$.

Reflexive Property For any real number a, a = a.

Symmetric Property If a = b, then b = a.

Transitive Property If a = b and b = c, then a = c.

Substitution Property If a = b, then a can be substituted for b in any equation or expression.

Writing Reasons

Solve 10 - 2x = 3(x - 2) + 4 and write a reason for each step.

SOLUTION

$$10 - 2x = 3(x - 2) + 4$$
 Given

$$10 - 2x = 3x - 6 + 4$$
 Distributive property

$$10 - 2x = 3x - 2$$
 Simplify.

$$12 - 2x = 3x$$
 Addition property of equality

$$12 = 5x$$
 Addition property of equality

$$\frac{12}{5} = x$$
 Division property of equality

Exercises for Example 1

Solve the equation and write a reason for each step.

1.
$$2x + 3 = 7x$$

2.
$$4 + 2(3x + 5) = 11 - x$$

3.
$$6x - 2 = -4(x - 1)$$

4.
$$\frac{1}{5}x + 4 = 2x + \frac{3}{5}$$

EXAMPLE 2

Using Properties of Length and Measure

In the diagram, WY = XZ. Show that WX = YZ.

Reteaching with Practice

For use with pages 96-101

SOLUTION

$$WY = XZ$$
 Given
$$WY = WX + XY$$
 Segment Addition Postulate
$$XZ = XY + XZ$$
 Segment Addition Postulate
$$WX + XY = XY + YZ$$
 Substitution property of equality
$$WX = YZ$$
 Subtraction property of equality

Exercises for Example 2

Use the given information to show the desired statement.

5. Given that MN = PQ, show that MP = NQ.

6. Given that AB = DE and BC = CD, show that AD = BE.

7. Given that $m \angle AQB = m \angle CQD$, show that $m \angle AQC = m \angle BQD$.

8. Given that $m \angle RPS = m \angle TPV$ and $m \angle TPV = m \angle SPT$, show that $m \angle RPV = 3(m \angle RPS)$

