\qquad

Challenge: Skills and Applications

For use with pages 71-78

Find the inverse, converse, and contrapositive of the statement. (You may need to rewrite the statement in if-then form first.)

1. If a bicycle is red, then it has two seats.
2. If a thopfoo can make a pucho, then all gorups are purple.
3. A student who enjoys mathematics certainly must have a logical mind.
4. All citizens of the Regal Kingdom have blue hair.

Tell whether the statement is true or false, state the converse of the statement, and tell whether the converse is true or false. If either is false, give a counterexample.
5. If a positive integer is divisible by 15 , then it is divisible by both 3 and 5 .
6. If a positive integer is divisible by both 2 and 3 , then it is divisible by 12 .
7. For an integer n, if n^{2} is divisible by 3 , then n is divisible by 3 .
8. For an integer n, if n^{2} is divisible by 4 , then n is divisible by 4 .

Tell whether the statement is true or false. Explain your answer.

9. The intersection of any two planes is a line.
10. Through any two points there exists exactly one plane.
11. A plane contains of at least three points.
12. If three points lie in a plane, the points are noncollinear.

In Exercises 13-18, let \boldsymbol{a} and \boldsymbol{b} be two intersecting lines that intersect at point X.

13. Make a conjecture about the number of planes that contain both a and b.
14. Which postulate allows you to state that there is a point Y, distinct from X, on line a, and a point Z, distinct from X, on line b ?
15. Which postulate guarantees that point Y is not on line b ?
16. Which postulate allows you to conclude that there is exactly one plane P that contains points X, Y, and Z ?
17. Which postulate guarantees that lines a and b are contained in plane P ?
18. Was the conjecture you made in Exercise 13 correct?
