\qquad
\qquad

Reteaching with Practice
 For use with pages 766-772

GOAL
 Find and use the scale factor of similar solids and use similar solids to

 solve problems
Vocabulary

Two solids with equal ratios of corresponding linear measures, such as heights or radii, are called similar solids.
The common ratio of linear measures for a pair of similar solids is called the scale factor of one solid to the other solid.

Theorem 12.13 Similar Solids Theorem If two similar solids have a scale factor of $a: b$, then corresponding areas have a ratio of $a^{2}: b^{2}$, and corresponding volumes have a ratio of $a^{3}: b^{3}$.

EXAMPLE 1 Identifying Similar Solids

Decide whether the two solids are similar. If so, find the scale factor.
a.

b.

Solution

a. The solids are similar because the ratios of corresponding linear measures are equal, as shown.

$$
\text { radii: } \frac{4}{6}=\frac{2}{3} \quad \text { heights: } \frac{6}{9}=\frac{2}{3}
$$

The solids have a scale factor of 2:3.
b. The solids are not similar because the ratios of corresponding linear measures are not equal, as shown.

$$
\text { widths: } \frac{4}{5} \quad \text { lengths: } \frac{8}{10}=\frac{4}{5} \quad \text { heights: } \frac{6}{8}=\frac{3}{4}
$$

\qquad

Reteaching with Practice

For use with pages 766-772
Exercises for Example 1

Decide whether the two solids are similar. If so, find the scale

 factor.1.

2.

3.

EXAMPLE 2 Using the Scale Factor of Similar Solids

The spheres are similar with a scale factor of 1:4. Find the surface area and volume of sphere B given that the surface area of sphere A is 144π square inches and the volume of sphere A is 288π cubic inches.

Solution

Begin by using Theorem 12.13 to set up two proportions.

$$
\begin{array}{ll}
\frac{\text { Surface area of } A}{\text { Surface area of } B}=\frac{a^{2}}{b^{2}} & \frac{\text { Volume of } A}{\text { Volume of } B}=\frac{a^{3}}{b^{3}} \\
\frac{144 \pi}{\text { Surface area of } B}=\frac{1^{2}}{4^{2}} & \frac{288 \pi}{\text { Volume of } B}=\frac{1^{3}}{4^{3}} \\
\text { Surface area of } B=2304 \pi & \text { Volume of } B=18,432 \pi
\end{array}
$$

So, the surface area of sphere B is 2304π square inches and the volume of sphere B is $18,432 \pi$ cubic inches.

Exercises for Example 2

The solid described is similar to a larger solid with the given scale factor. Find the surface area S and volume V of the larger solid.
4. A right cylinder with a surface area of 48π square centimeters and a volume of 45π cubic centimeters; scale factor 2:3

5. A right prism with a surface area of 82 square feet and a volume of 42 cubic feet; scale factor 1:2

