\qquad

Reteaching with Practice

For use with pages 759-765

GOAL Find the surface area of a sphere and find the volume of a sphere

Vocabulary

A sphere is the locus of points in space that are a given distance from a point called the center of the sphere.
A radius of a sphere is a segment from the center to a point on the sphere.
A chord of a sphere is a segment whose endpoints are on the sphere.
A diameter of a sphere is a chord that contains the center.
If a plane that intersects a sphere contains the center of the sphere, the intersection is a great circle of the sphere.
A great circle of a sphere separates the sphere into two congruent halves called hemispheres.
Theorem 12.11 Surface Area of a Sphere The surface area S of a sphere with radius r is $S=4 \pi r^{2}$.
Theorem 12.12 Volume of a Sphere The volume V of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.

EXAMPLE 1 Finding the Surface Area of a Sphere

Find the surface area of the sphere.

Solution

$$
\begin{aligned}
S & =4 \pi r^{2} \\
& =4 \pi(10)^{2} \\
& =400 \pi
\end{aligned}
$$

Formula for surface area of sphere Substitute. Simplify.

So, the surface area of the sphere is 400π square feet, or about 1256.6 square feet.

Exercises for Example 1

Find the surface area of the sphere.
1.

2.

3.

\qquad

Reteaching with Practice

For use with pages 759-765

example 2 Using a Great Circle

The circumference of a great circle of a sphere is 25 inches. Find the surface area of the sphere.

Solution

Begin by finding the radius of the sphere.

$$
\begin{aligned}
C & =2 \pi r & & \text { Formula for circumference of a circle } \\
25 & =2 \pi r & & \text { Substitute. } \\
4 & \approx r & & \text { Divide each side by } 2 \pi .
\end{aligned}
$$

Using a radius of 4 cm , the surface area is $S=4 \pi r^{2}=4 \pi(4)^{2}=64 \pi \mathrm{in}^{2}{ }^{2}$
So, the surface area of the sphere is $64 \pi \mathrm{in}^{2}$, or about $201.1 \mathrm{in} .^{2}$

Exercises for Example 2

Find the surface area of the sphere.
4.

5.

6.

EXAMPLE 3 Finding the Volume of a Sphere

Find the volume of the sphere.

Solution

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} & & \text { Formula for volume of sphere } \\
& =\frac{4}{3} \pi(3.5)^{3} & & \text { Substitute. } \\
& \approx 179.6 & & \text { Simplify. }
\end{aligned}
$$

So, the volume of the sphere is about 179.6 cubic feet.

Exercises for Example 3

Find the volume of the sphere.

7.

8.

9.

