\qquad

Challenge: Skills and Applications

For use with pages 759-765

1. Suppose that three spherical balls of wax of radius r are packed into a cylinder, also of radius r, as shown. If the wax is melted down, to what depth will the can be filled? Give your answer in terms of r.

2. If a hole of radius r is drilled through the center of a sphere of radius R, we refer to the remaining portion of the sphere as a bead with inner radius r and outer radius R. The height of the bead is h, as shown. It can be shown (using calculus) that the volume of a bead depends only on its height. Since the volume is the same whatever the value of r, you can find the answer to

$\frac{|r|}{r}$
 parts (a) and (b) by thinking of the special case where $r=0$ and the bead is actually a sphere.
a. What is the volume of a bead with height 12 cm ?
b. Give a formula for the volume V of a bead in terms of the height h.
3. Suppose a spherical bowl of radius R is filled with liquid to a depth d, where $d<R$. Complete the following steps to find a formula for the volume of the liquid. Let r be the radius of the circle that forms the top surface of the liquid.
a. Explain why the height of the bead with outer radius R and inner radius
 r is $2 R-2 d$. Then use your formula from Exercise 2(b) to find the volume of the bead in terms of R and d.
b. Refer to the cylinder shown at the right. First find the length of the unknown leg of the triangle in terms of R and d. Next use the Pythagorean Theorem to find r in terms of R and d. Then find the volume of the cylinder whose radius is r and whose height is $2 R-2 d$.
c. If the volumes you found in parts (a) and (b) are subtracted from $\frac{4}{3} \pi R^{3}$, the result is twice the volume of the liquid.

Use this fact to show that the volume of the liquid is $V=\frac{\pi d^{2}}{3}(3 R-d)$.
(Note: Although we assumed that $d<R$ to derive this formula, the formula is actually valid for $0 \leq d \leq 2 R$.)
4. Use the formula from Exercise 3(c) to find the volume of the liquid for each value of d. Make a sketch of the bowl with the given amount of liquid and tell whether the volume makes sense.
a. $d=0$
b. $d=R$
c. $d=2 R$
5. If $d=\frac{R}{2}$, the volume of the liquid is what fraction of the volume of the sphere?

Does your result seem reasonable? Explain.

