Reteaching with Practice

For use with pages 743-749

Name

LESSON

GOAL Use volume postulates and find the volume of prisms and cylinders

VOCABULARY

The **volume of a solid** is the number of cubic units contained in its interior. Volume is measured in cubic units.

Postulate 27 Volume of a Cube The volume of a cube is the cube of the length of its side, or $V = s^3$.

Postulate 28 Volume Congruence Postulate If two polyhedra are congruent, then they have the same volume.

Postulate 29 Volume Addition Postulate The volume of a solid is the sum of the volumes of all its nonoverlapping parts.

Theorem 12.6 Cavalieri's Principle If two solids have the same height and the same cross-sectional area at every level, then they have the same volume.

Theorem 12.7 Volume of a Prism The volume V of a prism is V = Bh, where B is the area of a base and h is the height.

Theorem 12.8 Volume of a Cylinder The volume V of a cylinder is $V = Bh = \pi r^2 h$, where B is the area of a base, h is the height, and r is the radius of a base.

EXAMPLE 1 Finding Volumes

Find the volume of the right cylinder and the right prism.

SOLUTION

a. The area *B* of the base is $\pi \cdot 2^2$, or $4\pi \text{ in.}^2$. Use h = 5 to find the volume.

 $V = Bh = 4\pi(5) = 20\pi \approx 62.83$ in.³

b. The area B of the base is (7)(5), or 35 cm². Use h = 3 to find the volume.

$$V = Bh = (35)(3) = 105 \text{ cm}^3$$

60

Reteaching with Practice

For use with pages 743-749

NAME

Exercises for Example 1

Find the volume of the right prism or the right cylinder.

EXAMPLE 2 Using Volumes

Use the measurements given to solve for *x*.

SOLUTION

The area of the base is 3x square centimeters.

V = Bh	Formula for volume of a right prism
60 = (3x)(5)	Substitute.
60 = 15x	Rewrite.
$\frac{60}{15} = x$	Divide each side by 15.
4 = x	Simplify.

Exercises for Example 2

Use the measurements given to solve for *x*.

12 ft

Date