$\qquad$

## Reteaching with Practice

For use with pages 743-749

## GOAL Use volume postulates and find the volume of prisms and cylinders

## Vocabulary

The volume of a solid is the number of cubic units contained in its interior. Volume is measured in cubic units.

Postulate 27 Volume of a Cube The volume of a cube is the cube of the length of its side, or $V=s^{3}$.

Postulate 28 Volume Congruence Postulate If two polyhedra are congruent, then they have the same volume.

Postulate 29 Volume Addition Postulate The volume of a solid is the sum of the volumes of all its nonoverlapping parts.

Theorem 12.6 Cavalieri's Principle If two solids have the same height and the same cross-sectional area at every level, then they have the same volume.
Theorem 12.7 Volume of a Prism The volume $V$ of a prism is $V=B h$, where $B$ is the area of a base and $h$ is the height.
Theorem 12.8 Volume of a Cylinder The volume $V$ of a cylinder is $V=B h=\pi r^{2} h$, where $B$ is the area of a base, $h$ is the height, and $r$ is the radius of a base.

## EXAMPLE 1 Finding Volumes

Find the volume of the right cylinder and the right prism.
a.

b.


## Solution

a. The area $B$ of the base is $\pi \cdot 2^{2}$, or $4 \pi$ in. ${ }^{2}$. Use $h=5$ to find the volume.

$$
V=B h=4 \pi(5)=20 \pi \approx 62.83 \mathrm{in} .^{3}
$$

b. The area $B$ of the base is $(7)(5)$, or $35 \mathrm{~cm}^{2}$. Use $h=3$ to find the volume.

$$
V=B h=(35)(3)=105 \mathrm{~cm}^{3}
$$

$\qquad$
$\qquad$

## Reteaching with Practice

For use with pages 743-749

## Exercises for Example 1

Find the volume of the right prism or the right cylinder.
1.

2.

3.


## EXAMPLE 2 Using Volumes

Use the measurements given to solve for $x$.

$$
V=60 \mathrm{~cm}^{3}
$$



## Solution

The area of the base is $3 x$ square centimeters.

$$
\begin{aligned}
V & =B h & & \text { Formula for volume of a right prism } \\
60 & =(3 x)(5) & & \text { Substitute. } \\
60 & =15 x & & \text { Rewrite. } \\
\frac{60}{15} & =x & & \text { Divide each side by } 15 . \\
4 & =x & & \text { Simplify. }
\end{aligned}
$$

## Exercises for Example 2

Use the measurements given to solve for $\boldsymbol{x}$.
4. $V=283 \mathrm{~m}^{3}$
5. $V=64 \mathrm{in} .^{3}$
6. $V=300 \mathrm{ft}^{3}$


