\qquad

Reteaching with Practice

For use with pages 719-726

GOAL Use properties of polyhedra and use Euler's Theorem

Vocabulary

A polyhedron is a solid that is bounded by polygons that enclose a single region of space.

The polygons that a polyhedron is bounded by are called faces.
An edge of a polyhedron is a line segment formed by the intersection of two faces.

A vertex of a polyhedron is a point where three or more edges meet.
A polyhedron is regular if all of its faces are congruent regular polygons.
Theorem 12.1 Euler's Theorem
The number of faces (F), vertices (V), and edges (E) of a polyhedron are related by the formula $F+V=E+2$.

EXAMPLE 1 Identifying Polyhedra

Determine whether each solid is a polyhedron. Explain your reasoning.
a.

b.

Solution

a. This is a polyhedron. All of its faces are polygons (2 triangles and 3 rectangles), which form a solid enclosing a single region of space.
b. This is not a polyhedron. Some of its faces are not polygons.

Exercises for Example 1

Determine whether each solid is a polyhedron. Explain your reasoning.

1.

2.

3.

\qquad
\qquad

Reteaching with Practice

For use with pages 719-726

EXAMPLE 2 Analyzing Solids

For each polyhedron, count the number of faces, vertices, and edges.
a.

b.

Solution

a. The polyhedron has 7 faces, 7 vertices, and 12 edges.
b. The polyhedron has 9 faces, 9 vertices, and 16 edges.

Exercises for Example 2

Count the number of faces, vertices, and edges.

4.

5.

6.

EXAMPLE 3 Using Euler's Theorem

Calculate the number of vertices of the solid, given that it has 10 faces, all triangles.

Solution

The 10 triangles alone would have $10(3)=30$ edges. Because each side in the solid is shared by
 two of these triangles, the total number of edges in the solid is half of this, or 15 . Now use Euler's Theorem to find the number of vertices.

$$
\begin{aligned}
F+V & =E+2 & & \text { Write Euler's Theorem. } \\
10+V & =15+2 & & \text { Substitute. } \\
V & =7 & & \text { Solve for } V .
\end{aligned}
$$

Exercise for Example 3

7. Calculate the number of vertices of the solid, given that it has 7 faces; 2 pentagons and 5 triangles.

