\qquad

Reteaching with Practice

For use with pages 699-705

GOAL Find a geometric probability

Vocabulary

A probability is a number from 0 to 1 that represents the chance that an event will occur.

Geometric probability is a probability that involves a geometric measure such as length or area.
Probability and Length Let $\overline{A B}$ be a segment that contains the segment $\overline{C D}$. If a point K on $\overline{A B}$ is chosen at random, then the probability that it is on $\overline{C D}$ is as follows:
$P($ Point K is on $\overline{C D})=\frac{C D}{A B}=\frac{\text { Length of } \overline{C D}}{\text { Length of } \overline{A B}}$
Probability and Area Let J be a region that contains region M. If a point K in J is chosen at random, then the probability that it is in region M is as follows:
$P($ Point K is in region $M)=\frac{\text { Area of } M}{\text { Area of } J}$

EXAMPLE 1 Finding a Geometric Probability

Find the probability that a point chosen at random on $\overline{A B}$ is on $\overline{C D}$.

Solution

$P($ Point is on $\overline{C D})=\frac{\text { Length of } \overline{C D}}{\text { Length of } \overline{A B}}=\frac{8}{12}=\frac{2}{3}$
The probability can be written as $\frac{2}{3}$, or approximately 0.667 , or 66.7%.

Exercises for Example 1

In Exercises 1-4, find the probability that a point A, selected randomly on $\overline{A B}$, is on the given segment.

1. $\overline{C D}$
2. $\overline{E F}$
3. $\overline{C F}$
4. $\overline{C E}$
\qquad
\qquad

Reteaching with Practice

For use with pages 699-705

EXAMPLE 2 Using Areas to Find a Geometric Probability

Find the probability that a point chosen at random in parallelogram $A B C D$ lies in the shaded region.

Solution

Find the ratio of the area of the shaded
 square to the area of the parallelogram.
$P($ point is in shaded region $)=\frac{\text { Area of shaded region }}{\text { Area of parallelogram }}$

$$
=\frac{s^{2}}{b h}=\frac{5^{2}}{8(5)}=\frac{25}{40}=\frac{5}{8}=0.625
$$

The probability that a point chosen at random in parallelogram $A B C D$ lies in the square is 0.625 .

Exercises for Example 2

Find the probability that a point chosen at random in the figure lies in the shaded region.
5.

6.

7.

