$\qquad$
$\qquad$

## Reteaching with Practice <br> For use with pages 691-698

GOAL Find the area of a circle and a sector of a circle and use areas of circles and sectors to solve problems

## Vocabulary

A sector of a circle is the region bounded by two radii of the circle and their intercepted arc.

## Theorem 11.7 Area of a Circle

The area of a circle is $\pi$ times the square of the radius, or $A=\pi r^{2}$.

## Theorem 11.8 Area of a Sector

The ratio of the area $A$ of a sector of a circle to the area of the circle is equal to the ratio of the measure of the intercepted arc to $360^{\circ}$.

$$
\frac{A}{\pi r^{2}}=\frac{m \widehat{A B}}{360^{\circ}}, \text { or } A=\frac{m \widehat{A B}}{360^{\circ}} \cdot \pi r^{2}
$$

## EXAMPLE 1 Using the Area of a Circle

a. Find the area of $\odot C$.
b. Find the radius of $\odot P$.



## Solution

a. Use $r=4.3$ in the area formula.

$$
\begin{aligned}
A & =\pi r^{2} \\
A & =\pi \cdot 4.3^{2} \\
A & \approx 58.09
\end{aligned}
$$

So, the area is about 58.09 square units.
b. $\quad A=\pi r^{2}$

$$
104=\pi r^{2}
$$

$$
\frac{104}{\pi}=r^{2}
$$

$$
33.10 \approx r^{2}
$$

$$
r \approx 5.75
$$

Name $\qquad$ Date $\qquad$

## Reteaching with Practice

For use with pages 691-698

## Exercises for Example 1

Find the indicated measure.

1. Area

2. Diameter

3. Radius


## example 2 Finding the Area of a Sector

Find the area of the sector shown at the right.

## Solution

Sector CPD intercepts an arc whose measure is $135^{\circ}$. The radius is 6 centimeters.

$$
\begin{array}{ll}
A=\frac{m \overparen{C D}}{360^{\circ}} \cdot \pi r^{2} & \begin{array}{l}
\text { Write the formula for the } \\
\text { area of a sector. }
\end{array} \\
A=\frac{135^{\circ}}{360^{\circ}} \cdot \pi \cdot 6^{2} & \text { Substitute known values. } \\
A \approx 42.4 & \text { Use a calculator. }
\end{array}
$$

## Exercises for Example 2

In Exercises 4-6, find the area of the shaded region.
4.

5.

6.


