LESSON

Reteaching with Practice

For use with pages 691–698

Name

Find the area of a circle and a sector of a circle and use areas of circles and GOAL sectors to solve problems

VOCABULARY

A sector of a circle is the region bounded by two radii of the circle and their intercepted arc.

Theorem 11.7 Area of a Circle

The area of a circle is π times the square of the radius, or $A = \pi r^2$.

Theorem 11.8 Area of a Sector

The ratio of the area A of a sector of a circle to the area of the circle is equal to the ratio of the measure of the intercepted arc to 360°.

$$\frac{A}{\pi r^2} = \frac{m\widehat{AB}}{360^\circ}, \text{ or } A = \frac{m\widehat{AB}}{360^\circ} \cdot \pi r^2$$

Using the Area of a Circle EXAMPLE 1

a. Find the area of $\bigcirc C$.

SOLUTION

a. Use $r = 4.3$ in the area formula.	b. $A = \pi r^2$
$A = \pi r^2$	$104 = \pi r^2$
$A = \pi \cdot 4.3^2$	$\frac{104}{\pi} = r^2$
$A \approx 58.09$	$33.10 \approx r^2$
So, the area is about 58.09 square units.	$r \approx 5.75$

EXAMPLE 2 Finding the Area of a Sector

Find the area of the sector shown at the right.

SOLUTION

Sector *CPD* intercepts an arc whose measure is 135° . The radius is 6 centimeters.

$$A = \frac{m\widehat{CD}}{360^{\circ}} \cdot \pi r^{2}$$
 Write the formula for the area of a sector.
$$A = \frac{135^{\circ}}{360^{\circ}} \cdot \pi \cdot 6^{2}$$
 Substitute known values.

 $A \approx 42.4$ Use a calculator.

Exercises for Example 2

In Exercises 4–6, find the area of the shaded region.

C

135°

6 cm

P