\qquad
\qquad

Reteaching with Practice

For use with pages 683-689

GOAL Find the circumference of a circle and the length of a circular arc

Vocabulary

The circumference of a circle is the distance around the circle.
An arc length is a portion of the circumference of a circle.
Theorem 11.6 Circumference of a Circle The circumference C of a circle is $C=\pi d$ or $C=2 \pi r$, where d is the diameter of the circle and r is the radius of the circle.
Arc Length Corollary In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$$
\frac{\text { Arc length of } \widehat{A B}}{2 \pi r}=\frac{m \widehat{A B}}{360^{\circ}} \text {, or Arc length of } \overparen{A B}=\frac{m \widehat{A B}}{360^{\circ}} \cdot 2 \pi r
$$

EXAMPLE 1

Using Circumferences

a. Find the circumference of a circle with radius 10.5 inches.
b. Find the radius of a circle with circumference 25 feet.

Solution

a. $C=2 \pi r$
$C=2 \cdot \pi \cdot(10.5)$
$C=21 \pi$
$C \approx 65.97$ inches
b. $\quad C=2 \pi r$
$25=2 \pi r$
$\frac{25}{2 \pi}=r$
$r \approx 3.98$ feet

Exercises for Example 1

In Exercises 1-4, find the indicated measure.

1. Find the circumference of a circle with radius 17 centimeters.
2. Find the circumference of a circle with diameter 14 inches.
3. Find the radius of a circle with circumference 14 yards.
4. Find the diameter of a circle with circumference 12 feet.

EXAMPLE 2 Finding Arc Lengths

Find the length of each arc.
a.

b.

\qquad
\qquad

Reteaching with Practice
 For use with pages 683-689

Solution

a. Arc length of $\overparen{A B}=\frac{45^{\circ}}{360^{\circ}} \cdot 2 \pi(3) \approx 2.36$ inches
b. Arc length of $\overparen{C D}=\frac{115^{\circ}}{360^{\circ}} \cdot 2 \pi(6) \approx 12.04$ centimeters

Exercises for Example 2

In Exercises 5-7, find the length of each arc.
5.

6.

7.

EXAMPLE 3 Using Arc Lengths

Find the circumference of the circle.

Solution

$$
\frac{\text { Arc length of } \overparen{P Q}}{2 \pi r}=\frac{m \overparen{P Q}}{360^{\circ}}
$$

Now substitute 4.5 for the arc length of $\widehat{P Q}$, 72° for $m \widehat{P Q}$, and C for $2 \pi r$.
So, $\frac{4.5}{C}=\frac{72^{\circ}}{360^{\circ}}$, or $\frac{4.5}{C}=0.2$. So, $C=\frac{4.5}{0.2}=22.5$.

Exercises for Example 3

Find the indicated measure.
8. Circumference

9. Radius

10. $m \overparen{P Q}$

