\qquad

Challenge: Skills and Applications

For use with pages 677-682

1. Refer to the diagram. $P Q R S$ is a trapezoid with bases $\overline{P Q}$, of length 9 , and $\overline{R S}$, of length 15 . The area of $\triangle O P Q$ is 27 .
a. Find the area of $\triangle O R S$.
b. Find the height of $\triangle O P Q$.
c. Find the height of $\triangle O R S$.

d. Find the area of trapezoid $P Q R S$.
2. Areas of similar triangles can be used to prove the Pythagorean Theorem. Let $\triangle X Y Z$ be a right triangle with side lengths x, y, and z, as shown. Extend $\overline{Y Z}$ to W so that $\overline{W X} \perp \overline{X Y}$. As you know, $\triangle X Y Z \sim \triangle W X Z \sim \triangle W Y X$.
a. Find the ratios $\frac{\text { Side length of } \triangle W X Z}{\text { Side length of } \triangle X Y Z}$ and
 $\frac{\text { Side length of } \triangle W Y X}{\text { Side length of } \triangle X Y Z}$ in terms of x, y, and z.
b. Let A be the area of $\triangle X Y Z$. Find expressions for the area of $\triangle W X Z$ and the area of $\triangle W Y X$ in terms of A, x, y, and z.
c. Observe that area of $\triangle X Y Z+$ area of $\triangle W X Z=$ area of $\triangle W Y X$. Explain how to use this fact to derive the Pythagorean Theorem.

In Exercises 3-6, use the information about a pair of similar polygons to

 find all possible values of \boldsymbol{x}.3. The area of $\triangle A B C$ is 5 .

The perimeter of $\triangle A B C$ is 2 .
4. The area of HIJK is $x+4$.

The perimeter of HIJK is $\frac{x}{2}$.
5. The area of $\triangle P Q R$ is $2 x-11$.

The perimeter of $\triangle P Q R$ is $x-7$.
6. The area of $E F G H$ is $2 x+9$.

The perimeter of $E F G H$ is $x+3$.

The area of $\triangle D E F$ is $x^{2}+9$.
The perimeter of $\triangle D E F$ is x.
The area of STUV is 5 .
The perimeter of STUV is \sqrt{x}.
The area of $\triangle W X Y$ is $2 x+5$.
The perimeter of $\triangle W X Y$ is $x-5$.
The area of $J K L M$ is $2 x-6$.
The perimeter of $J K L M$ is $x-1$.

