LESSON

Reteaching with Practice

For use with pages 669-675

GOAL Find the area of an equilateral triangle and a regular polygon

Vocabulary

The center of a regular polygon is the center of its circumscribed circle.

The radius of a regular polygon is the radius of its circumscribed circle.

The distance from the center to any side of a regular polygon is called the **apothem of the polygon**.

A **central angle of a regular polygon** is an angle whose vertex is the center and whose sides contain two consecutive vertices of the polygon.

Theorem 11.3 Area of an Equilateral Triangle The area of an equilateral triangle is one fourth the square of the length of the side times $\sqrt{3}$. $A = \frac{1}{4}\sqrt{3}s^2$

Theorem 11.4 Area of a Regular Polygon The area of a regular *n*-gon with side length *s* is half the product of the apothem *a* and the perimeter *P*, so $A = \frac{1}{2}aP$, or $A = \frac{1}{2}a \cdot ns$.

EXAMPLE 1 Finding the Area of an Equilateral Triangle

Find the area of an equilateral triangle with 4 foot sides.

SOLUTION

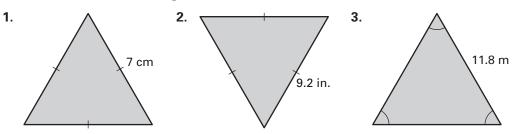
Use s = 4 in the formula of Theorem 11.3.

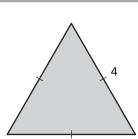
$$A = \frac{1}{4}\sqrt{3}s^2 = \frac{1}{4}\sqrt{3}(4^2)$$
$$= \frac{1}{4}\sqrt{3}(16) = \frac{1}{4}(16)\sqrt{3} = 4\sqrt{3} \text{ square feet}$$

Using a calculator, the area is about 6.9 square feet.

Exercises for Example 1

Find the area of the triangle.





Date

Name

Reteaching with Practice

For use with pages 669–675

EXAMPLE 2 Finding the Area of a Regular Polygon

A regular octagon is inscribed in a circle with radius 2 units. Find the area of the octagon.

SOLUTION

To apply the formula for the area of a regular octagon, you must find its apothem and perimeter.

The measure of central $\angle ABC$ is $\frac{1}{8} \cdot 360^{\circ} = 45^{\circ}$.

In isosceles triangle *ABC*, the altitude to base \overline{AC} also bisects $\angle ABC$ and side \overline{AC} . The measure of $\angle DBC$ is 22.5°. In $\triangle BDC$, you can use trigonometric ratios to find the lengths of the legs.

$$\cos 22.5^\circ = \frac{BD}{BC} = \frac{BD}{2}$$
 and $\sin 22.5^\circ = \frac{DC}{BC} = \frac{DC}{2}$

So, the octagon has an apothem of $a = BD = 2 \cdot \cos 22.5^{\circ}$ and perimeter of $P = 8(AC) = 8(2 \cdot DC) = 8(2 \cdot 2 \cdot \sin 22.5^{\circ}) = 32 \cdot \sin 22.5^{\circ}$. The area of the octagon is

$$A = \frac{1}{2}aP = \frac{1}{2}(2 \cdot \cos 22.5^{\circ})(32 \cdot \sin 22.5^{\circ}) \approx 11.3 \text{ square units.}$$

Exercise for Example 2

4. Find the area of a regular pentagon inscribed in a circle with radius 3 units.

EXAMPLE 3 Finding the Perimeter and Area of a Regular Polygon

Find the perimeter and area of a regular hexagon with side length of 4 cm and radius 4 cm.

SOLUTION

A hexagon has 6 sides. So, the perimeter is P = 6(4) = 24 cm.

To determine the apothem, consider the triangle SBT.

$$BT = \frac{1}{2}(BA) = \frac{1}{2}(4) = 2$$
 cm.

Use the Pythagorean Theorem to find the apothem ST.

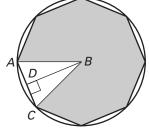
 $a = \sqrt{4^2 - 2^2} = 2\sqrt{3}$ cm.

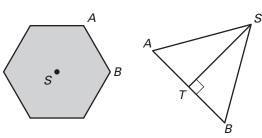
So, the area of the hexagon is $A = \frac{1}{2}aP = \frac{1}{2}(2\sqrt{3})(24) = 24\sqrt{3} \text{ cm}^2$.

Exercise for Example 3

Find the perimeter and area of the regular polygon described.

5. Regular octagon with side length 9.18 feet and radius 12 feet.





34

Date

Copyright © McDougal Littell Inc. All rights reserved.