\qquad

Challenge: Skills and Applications

For use with pages 669-675

In Exercises 1-8, refer to the diagram. O is the center of a regular n-gon, and P and Q are adjacent vertices of the polygon. M is the midpoint of $\overline{P Q}$.

1. Identify each of $O M, O P$, and $P Q$ as the side length, the radius, or the apothem of the n-gon.
2. Find a formula for x in terms of n.
3. Find a formula for the apothem length a in terms of n and the radius r. (Hint: Use your answer to Exercise 2.)
4. Find a formula for the side length s in terms of n and the
 radius r.
5. Find a formula for the apothem a in terms of n and the side length s.
6. Find a formula for the area of a regular n-gon in terms of n and the side length s.
7. Find a formula for the area of a regular n-gon in terms of n and the apothem length a.
8. Find a formula for the area of a regular n-gon in terms of n and the radius r.
9. Consider a regular n-gon inscribed in a circle of radius 1 . Use a calculator and the result of Exercise 8 to find the area of the n-gon for $n=4,8,25,50$, and 100 . What number does the area seem to approach as n increases? Round decimals to the nearest hundredth.

10. Refer to the diagram, which shows an arbitrary point P inside a regular pentagon, along with perpendiculars drawn from P to the sides of the pentagon (or extensions of the sides).
a. Show that $P V+P W+P X+P Y+P Z$ does not depend on how P is chosen inside the pentagon.
b. If $A B=5$, find the value of $P V+P W+P X+P Y+P Z$.
Round to the nearest tenth.

