LESSON

Reteaching with Practice

For use with pages 661–668

Vocabulary

Theorem 11.1 Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a convex *n*-gon is $(n - 2) \cdot 180^{\circ}$.

Corollary to Theorem 11.1

The measure of each interior angle of a regular *n*-gon is

$$\frac{1}{n} \cdot (n-2) \cdot 180^{\circ}$$
, or $\frac{(n-2) \cdot 180^{\circ}}{n}$.

Theorem 11.2 Polygon Exterior Angles Theorem

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360° .

Corollary to Theorem 11.2

The measure of each exterior angle of a regular n-gon is

 $\frac{1}{n} \cdot 360^\circ$, or $\frac{360^\circ}{n}$.

EXAMPLE 1 Finding Measures of Interior Angles of Polygons

Find the value of *x*.

SOLUTION

The sum of the measure of the interior angles of any pentagon is $(5 - 2) \cdot 180^\circ = 3 \cdot 180^\circ = 540^\circ.$

135

Add the measures of the interior angles of the pentagon.

 $64^{\circ} + 115^{\circ} + 96^{\circ} + 90^{\circ} + x^{\circ} = 540^{\circ}$ The sum is 540°. 365 + x = 540 Simplify. x = 175 Subtract 365 from each side.

125°

135

82°

Reteaching with Practice

For use with pages 661–668

EXAMPLE 2 Finding the Number of Sides of a Polygon

The measure of each interior angle of a regular polygon is 144°. How many sides does the polygon have?

SOLUTION

Name

 $\frac{1}{n} \cdot (n-2) \cdot 180^{\circ} = 144^{\circ}$ Corollary to Theorem 11.1 $(n-2) \cdot 180 = 144n$ Multiply each side by *n*. 180n - 360 = 144nDistributive property n = 10Solve for *n*.

Exercise for Example 2

4. The measure of each interior angle of a regular *n*-gon is 156° . Find the value of *n*.

EXAMPLE 3 Finding the Measure of an Exterior Angle

Find the value of *x* in each diagram.

.....

SOLUTION

a. $x^{\circ} + 90^{\circ} + 2x^{\circ} + 70^{\circ} + 80^{\circ} + 60^{\circ} = 360^{\circ}$ Theorem 11.2 3x = 60 Combine like terms. x = 20 Divide each side by 3.

b.
$$x^{\circ} = \frac{1}{5} \cdot 360^{\circ}$$
 Use $n = 5$ in the Corollary to Theorem 11.2.

$$x = 72$$
 Simplify.

Find the value of *x*.

Copyright © McDougal Littell Inc. All rights reserved.

Geometry Chapter 11 Resource Book

18

____ Date