\qquad
\qquad

Reteaching with Practice
 For use with pages 661-668

GOAL Find the measures of interior and exterior angles of polygons

VOCABULARY

Theorem 11.1 Polygon Interior Angles Theorem
The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$.

Corollary to Theorem 11.1

The measure of each interior angle of a regular n-gon is

$$
\frac{1}{n} \cdot(n-2) \cdot 180^{\circ}, \text { or } \frac{(n-2) \cdot 180^{\circ}}{n}
$$

Theorem 11.2 Polygon Exterior Angles Theorem

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.

Corollary to Theorem 11.2

The measure of each exterior angle of a regular n-gon is

$$
\frac{1}{n} \cdot 360^{\circ} \text {, or } \frac{360^{\circ}}{n} \text {. }
$$

example 1 Finding Measures of Interior Angles of Polygons

Find the value of x.

Solution

The sum of the measure of the interior angles of any pentagon is $(5-2) \cdot 180^{\circ}=3 \cdot 180^{\circ}=540^{\circ}$.

Add the measures of the interior angles of the pentagon.

$$
\begin{aligned}
64^{\circ}+115^{\circ}+96^{\circ}+90^{\circ}+x^{\circ} & =540^{\circ} & & \text { The sum is } 540^{\circ} . \\
365+x & =540 & & \text { Simplify. } \\
x & =175 & & \text { Subtract } 365 \text { from each side. } .
\end{aligned}
$$

Exercises for Example 1

In Exercises 1-3, find the value of \boldsymbol{x}.

1.

2.

3.

\qquad

Reteaching with Practice
 For use with pages 661-668

EXAMPLE 2
 Finding the Number of Sides of a Polygon

The measure of each interior angle of a regular polygon is 144°.
How many sides does the polygon have?

Solution

$$
\begin{aligned}
\frac{1}{n} \cdot(n-2) \cdot 180^{\circ} & =144^{\circ} & & \text { Corollary to Theorem 11.1 } \\
(n-2) \cdot 180 & =144 n & & \text { Multiply each side by } n . \\
180 n-360 & =144 n & & \text { Distributive property } \\
n & =10 & & \text { Solve for } n .
\end{aligned}
$$

Exercise for Example 2

4. The measure of each interior angle of a regular n-gon is 156°. Find the value of n.

example 3 Finding the Measure of an Exterior Angle

Find the value of x in each diagram.
a.

b.

SOLUTION

a. $x^{\circ}+90^{\circ}+2 x^{\circ}+70^{\circ}+80^{\circ}+60^{\circ}=360^{\circ}$

Theorem 11.2
$3 x=60 \quad$ Combine like terms.
$x=20 \quad$ Divide each side by 3 .
b. $x^{\circ}=\frac{1}{5} \cdot 360^{\circ} \quad$ Use $n=5$ in the Corollary to Theorem 11.2.

$$
x=72 \quad \text { Simplify }
$$

Exercises for Example 3

Find the value of \boldsymbol{x}.

5.

6.

