

Practice C

For use with pages 642–648

Draw the figure. Then sketch and describe the locus points on the paper that satisfy the given conditions.

- **1.** Acute $\angle ABC$, the locus of points on or in the interior of the angle and equidistant from the rays that form the angle
- **2.** Segment \overline{AB} , all points that are equidistant from the endpoints of the segment
- **3.** Segment \overline{AB} , of length 5 centimeters, all points that are 2 centimeters from the segment
- **4.** Circle of radius 2 centimeters the locus of points that are 1 centimeter from the circle
- **5.** Two concentric circles with radii 3 centimeters and 7 centimeters, all points that are equidistant from the two circles
- **6.** Isosceles trapezoid, all points that are equidistant from the vertices of the isosceles trapezoid

Use the graph at the right to write the equation(s) for the locus of points in the coordinate plane that satisfy the given condition.

- **7.** Equidistant from *R* and *S*
- **8.** 2 units from *R*
- **9.** Equidistant from the *x* and *y*-axes
- **10.** *Coordinate Geometry* Copy the triangle at the right. Construct the locus of points in a plane that are equidistant from the three vertices of the triangle.
- **11.** *Coordinate Geometry* Copy the triangle at the right. Construct the locus of points in a plane that are equidistant from the three sides of the triangle.

