\qquad

Challenge: Skills and Applications

For use with pages 636-640

1. Circle C_{1} has equation $(x+2)^{2}+(y+4)^{2}=64$, and circle C_{2} has equation $(x-h)^{2}+(y-1)^{2}=81$. The distance between the centers of the circles is 13 .
a. Find all possible values of h.
b. If a segment connecting the centers of the circles is drawn, let A be the intersection of the segment with C_{1}, and let B be the intersection of the segment with C_{2}. Find $A B$. (Hint: Use a diagram and the known radii.)
c. Find the equations of the two circles that have the same center as C_{1} and are tangent with C_{2}. (Hint: Use your diagram and answer from part (b).)
2. Use the diagram to write a coordinate proof showing that the perpendicular bisector of a chord of a circle contains the center of the circle. (Let M be the midpoint of the chord.)

3. Use the diagram to write a coordinate proof showing that if one side of a triangle inscribed in a circle is a diameter of the circle, then the triangle is a right triangle.

In Exercises 4-9, find the center and radius of the circle.

Example: $x^{2}+y^{2}-6 x+4 y-3=0$
Complete the square in x and in y.

$$
\begin{aligned}
x^{2}-6 x+y^{2}+4 y & =3 \\
\left(x^{2}-6 x+9\right)+\left(y^{2}+4 y+4\right) & =3+9+4 \\
(x-3)^{2}+(y+2)^{2} & =16
\end{aligned}
$$

The circle has center $(3,-2)$ and radius 4 .
4. $x^{2}+y^{2}+4 x+6 y-36=0$
5. $x^{2}+y^{2}-10 x+8 y-23=0$
6. $x^{2}+y^{2}+2 x-35=0$
7. $x^{2}+y^{2}+6 x-8 y=0$
8. $x^{2}+y^{2}+6 x-14 y-12=0$
9. $x^{2}+y^{2}-8 x-4 y+18=0$

