You will need: • graph paper • ruler • compass • protractor An engineer designs a curve in a road that is an arc of a circle as follows: Given two points A and B, the engineer locates a point C on the perpendicular bisector of $\overline{A B}$, then draws a circle with center C and radius $A C$. The portion of the circle from A to B is an arc that represents the curved road between A and B.

1. Why does the engineer look for a point on the perpendicular bisector of $\overline{A B}$?
2. Graph the points $A(2,2)$ and $B(14,6)$ on a coordinate plane. Use the engineer's method to design a curved road between A and B. (You will need a compass.) Label the coordinates of point C. Find the length of the radius of $\odot C$. Find the measure of $\angle A C B$. How many choices are there for the location of C ? Explain.
3. On the same graph, label M as the midpoint of $\overline{A B}$. Draw a circle with center M and radius $A M$. Do you think this circle gives a suitable arc for a curved road between A and B ? Explain.
4. Draw several other arcs between A and B. As the radius of the circle drawn gets longer, what happens to the length of the arc between A and B ? What happens to the measure of $\angle A C B$?
